
S.E. Skipetrov and S.S. Chesnokov Vol. 10,  No. 12 /December  1997/ Atmos. Oceanic Opt.  
 

0235-6880/97/12  937-05  $02.00  © 1997 Institute of Atmospheric Optics 
 

937

FEASIBILITY OF LOCALIZATION AND DIAGNOSTICS OF DYNAMIC 

INHOMOGENEITIES IN STRONGLY SCATTERING TURBID MEDIA 
 

S.E. Skipetrov and S.S. Chesnokov 
 

M.V. Lomonosov Moscow State University 

Received August 1, 1997 
 

The feasibility of localization and diagnostics of dynamic inhomogeneities in 

strongly scattering turbid media is investigated based on an analysis of the 

temporal autocorrelation functions of the multiply scattered radiation measured at 

the boundary of the medium.  Conditions are determined when localization is 

possible.  The accuracy of the examined localization method is estimated. 
 

Turbid media that strongly scatter light and have 
inhomogeneities of the dielectric constant whose 
dimensions are comparable with the wavelength λ of 
the propagating radiation are nontransparent even when 
the light absorption by these media on the examined 
wavelength is insignificant.1  This is connected, first, 
with the multiple light scattering by these media, and 
second, with sufficiently high probability of scattering 
at large angles in each elementary scattering event.  
Therefore, traditional optical methods are ineffective 
for the construction of the image of an object located 
within the bulk of the turbid medium. 

At the same time, one of the important applied 
problems now is the localization and diagnostics of pure 
dynamic inhomogeneities located within the bulk of the 
turbid medium.2  The dynamic inhomogeneity has the 
same light absorption and scattering coefficients as the 
surrounding medium.  However, the particles located 
inside this inhomogeneity move differently than the 
particles of the surrounding medium.  This permits one 
to use the temporal autocorrelation function 

 

G1(r, τ) = <E(r, t) E*(r, t + τ)>  
 

of the depolarized multiply scattered light measured at 
different points r of the boundary to be used for 
localization of dynamic inhomogeneity within the bulk 
of the turbid medium and the character and intensity of 
motion of the light scattering particles to be 
estimated.3$5 

In the present paper, we consider a theoretical 
approach to a calculation of the temporal correlation 
function of the radiation multiply scattered in 
dynamically inhomogeneous turbid media and analyze 
in detail the feasibility of localization of dynamic 
inhomogeneities in these media. 

 

1. PRINCIPLES OF THE THEORETICAL 

APPROACH 

 
One of the most widely known approaches to a 

solution of the light scattering problem in turbid media 
is the diffusion approximation of the radiative transfer 
 

equation.1  In this case, as shown in Refs. 6$7, the 
temporal correlation function G1(r, τ) of the field 
measured at the point r of the specimen boundary in 
the stationary case can be found as a solution to the 
diffusion equation 

 

[∇2 $ α2
 (τ)] G1(r, τ) = 

F(r)
Dp

, (1) 

 

where Dp = cl*/3 is the light diffusion coefficient, l* is 
the transport mean free path of photons, c is the light 
speed in the medium, F(r) describes the distribution of 
light sources in the medium, and a specific form of the 
function α(τ) depends on the character of motion of 
scatterers in the medium.  As shown in Refs. 8 and 9, 
in case of Brownian motion of particles in the medium 
characterized by the diffusion coefficient DB, 
α2(τ) = 3τ/(2τ0l*2), where τ0 = (4k2 DB)$1 and 
k = 2π/λ.  For a laminar flow of scatterers, 
α2(τ) = 6(τ/(τf l*))2, where the characteristic time τf 
depends on the geometry of the flow.10,11 

Let us consider a semi-infinite medium occupying 
the half-space x > 0 with a latent inclusion (an object) 
of volume V1 bounded by the surface S1.  The 
transverse size of this object in any direction is much 
larger than l*. Of interest for us is the case in which 
the dynamics of scatterers inside the volume V1 differs 
from their dynamics in the surrounding medium.  In 
order to describe this difference, we introduce 
additional spatial dependence of the term α2(τ) in 
equation (1) in the form 

 

α2
 (τ) = 

⎩
⎨
⎧ αin

2
(τ), r ∈ V1,

αout
2

(τ), r ∉ V1.
 (2) 

 

This approach is correct only for sufficiently large 
dynamic inhomogeneities when the diffusion 
approximation is true inside the inclusion itself.  In this 
case, inside the object far from its boundaries G1(r, t) 

is described by equation (1) with α2(τ) = αin
2
(τ) and in 

the remaining medium it is described 
 



938   Atmos. Oceanic Opt.  /December  1997/  Vol. 10,  No. 12 S.E. Skipetrov and S.S. Chesnokov 
 

by equation (1) with α2(τ) = αout
2

(τ). To obtain the 
solution for the entire medium, equation (1) should be 
solved inside and outside of the object with the 
following boundary conditions1,2 on the boundary of 
the medium S and on the boundary of the 
inhomogeneity S1: 

 

G1
out

 (r, τ) $ 
2
3
 l* (n ∇ G1

out
(r, τ)) = 0,    r ∈ S, (3) 

 

G1
in

 (r, τ) = G1
out

 (r, τ) ,     r ∈ S1,  (4) 
 

Dp
in

 (n ∇ G1
in
(r, t)) = Dp

out
 (n ∇ G1

out
(r, t)), r ∈ S1. (5) 

 
Here, n is the unit vector orthogonal to the 

corresponding surface and directed inward, G1
in,out

(r, τ) 

and D!
in,out

 are the solutions of Eq. (1) and the light 
diffusion coefficients inside and outside of the volume 
V1, respectively.  Because here we are interested only 

in dynamic inhomogeneities, D!
in
 = G!

out
 and condition 

(5) is simplified. 
 

 
 

FIG. 1.  Schemes of the examined dynamically 
inhomogeneous media. 

 
Condition (3) can be approximated by the zero 

boundary condition for Gout
1 (r, t) on the so-called 

extrapolated boundary1,12 x = $x1 = $Δl*, where Δ 
depends on the conditions of scattering near the 
boundary.1,11  For isotropic scattering and equal 
refractive indices of scattering and surrounding media 
from the Milne theory it was found that Δ = 0.7104 
(see Ref. 1).  Different refractive indices can be 
considered by varying the position of the extrapolated 
boundary, that is, by changing Δ. 

Let us restrict ourselves to the cases in which the 
dynamic inhomogeneity has the form of either a plane-
parallel layer of thickness d (Fig. 1a), or a cylindrical 
capillary of diameter d (Fig. 1b) parallel to the surface 
of the semi-infinite medium x = 0 and consider a  
 

laminar flow of scattering particles with the Poiseuille 
profile of the velocity inside the inhomogeneity.  In 
case of capillary, we direct the z axis along the 
capillary axis.  Let us consider that the diffusion 
coefficients of the particles inside and outside of the 
volume of dynamic inhomogeneity are equal.  In 
combination with the above-imposed requirements of 
constant light diffusion coefficient Dp in the entire 
volume this means that the same solution which fills 
the remaining volume of the specimen is pumped 
through the inhomogeneity.  Different types of motion 
(translational and chaotic) inside the dynamic 
inhomogeneities can be considered independent: the 
velocity of an individual scatterer is taken to be equal 
to a sum of the velocities of its translational and 
chaotic motions.  Then, because the scatterers in the 
medium surrounding the object take part only in the 
Brownian motion, we have5 

 

α in
2

 (τ) = 
3τ

2τ0 l*2
 + 6 

⎝
⎛

⎠
⎞τ

τf l*
 

2

,  (6) 

 

α out
2

 (τ) = 
3τ

2τ0 l*2
 . (7) 

 
In accordance with Ref. 10$11, we consider that τf 

is determined by the rms value of the velocity gradient 
Γ1 inside the inclusion 

 

τf = 30 / (k l* Γ1).  (8) 
 

For the Poiseuille profile of the flow velocity, Γ1 is 
easily calculated. 

Such problem formulation means that we consider 
additional loss of photon correlation in the region of 
flow localization depending only on the total length of 
photon trajectories inside the volume V1 rather than on 
the specific forms of the photon trajectories.  This is 

true only for d >> l* and only for the photons that have 
sufficiently long trajectories.  Therefore, in accordance 
with the results obtained by Bicout and Maynard,11 the 
theory developed here will be true only for sufficiently 
short times τ, namely, for τ < τ0, τf. 

Finally, let us assume that a plane monochromatic 
wave of unit amplitude is incident on the medium 
described above.  Considering that the incident 
radiation is scattered for the first time after passage of 
the distance of the order of l*, the source function in 
Eq. (1) is written as F(r) = δ(x $ x0), where x0 ~ l*. 

 

2. SOLUTIONS FOR THE SPECIFIC GEOMETRY 

 

At first, we determine the expression for the 
normalized correlation function g1(r, τ) = 
= G1(r, τ)/G1(r, 0) of depolarized light scattered in 
the backward direction by a macrohomogeneous semi-
infinite medium (τf → ∞).  In this case, the solution of 
equation (1) with boundary condition (3) at x = x0 



S.E. Skipetrov and S.S. Chesnokov Vol. 10,  No. 12 /December  1997/ Atmos. Oceanic Opt.  
 

 

939

(the plane where the scattered radiation leaves the 
medium) in the limit τ << τ0 has the form 

 

g1
0
(τ) ≡ 

G1(τ)
G1(0)

 = exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ γ 
3τ
2τ0

  ,  (9) 

 
where γ = 1 + Δ is the numerical constant of the order 
of two and the superscript œ0B of the correlation 

function g1
0
(τ) is introduced to denote that it 

corresponds to macrohomogeneous medium.  The result 
given by Eq. (9) was obtained elsewhere by other 
methods.7,9  It agrees well with the experimental data 
reported in Refs. 6 and 7. 

If the object located in the medium has the form 
of a plane-parallel layer of width d located at the depth 
x within the semi-infinite medium, the solution of 
equation (1) with boundary conditions (3)$(5) is4 

 

g1(τ) ≡ 
P(ξ1)

P(ξ2)
,  (10) 

 

where 
 

P(ξ) = αin αout exp(αout ξ) + th(αin d) × 

× [αout
2

 ch(αout ξ) + αin
2
 sh(αout ξ)], 

ξ1 = x $ x0,  ξ2 = x + x1. 
 

Finally, for the object of the form of cylindrical 
capillary of infinite length with the radius a located 
parallel to the z axis at the distance x from the surface 
of the semi-infinite medium, the solution can be written 

in the form g1(r, τ) = g1
0
(τ) + g1

scatt
(r, τ), where g1

0
(τ) is 

given by Eq. (9) and the last term describes the 
influence of the object on the correlation function.  
Considering that g = 0 corresponds to the point located 
immediately in front of the capillary axis, we first solve 
equation (1) for the above-described geometry without 
boundary condition (3) at the boundary of the medium 
x = 0 (see Ref. 4) 

 

g1
scatt

(x, y, τ) = $ 
h $ x0

2π l*
 ∑
n=1

∞

 
 ⌡⌠
$π/2

π/2

 
 

dθs

cosθs
 × 

 

× Kn ⎝
⎛

⎠
⎞αout 

h $ x0

cosθs
 Kn (αout h2 + y2) cos(n(θs $ θ)) × 

 

× ⎣
⎡

⎦
⎤αout In′(αout a) In(αin a) $ αin In(αout a) In′(αin a)

αout Kn′(αout a) In(αin a) $ αin Kn(αout a) In′(αin a)
. 

 (11) 
 

In this expression In and Kn are the modified Bessel 
functions, the prime denotes differentiation of 
corresponding function with respect to its argument, 
h = x + a is the abscissa of the capillary axis, and 
θ = arctan(y/h). 

To satisfy the zero boundary condition in the plane 

x = $x1 and thereby to obtain g1
scatt

 for the geometry of 

interest to us, we use the method of images.  To this 
end, we place the same capillary and radiation source 
with the opposite sign on the other side of the plane 
x = $x1 so that the geometry of the problem becomes 
symmetric.  Then the desired solution is written in the 
form of a sum of the terms (given by Eq. (11)) that 
correspond to two different capillaries and light 
sources.  However, this result is approximate and 
describes satisfactorily the processes of light scattering 
only when the influence of the dynamic inhomogeneity 
on the temporal correlation function is weak. 

To illustrate the influence of the object on the 
temporal correlation function more vividly and to 
estimate the feasibility of registration of this influence, 
we introduce the maximum deviation of the correlation 

function g1(r, t), measured with the object, from g1
0
(τ) 

corresponding to the macrohomogeneous medium 
 

Δg(r) = 
0 < τ < ∞

max  ⏐g1(r, τ) $ g1
0
(r, τ)⏐. (12) 

 

3. MAIN RESULTS AND THEIR DISCUSSION 

 

Correlation functions of the backscattered light are 
shown in Fig. 2 for the cylindrical capillary at g = 0 
(the solid lines) and for the plane-parallel layer (the 
dashed lines).  These curves are shown for different 
depths x of the inhomogeneity inside the turbid 
medium. 

 

 
 

FIG. 2.  Normalized temporal autocorrelation 
functions of the backscattered light for the Poiseuille 
flow in the plane-parallel layer (the dashed lines) and 
cylindrical capillary (the solid lines) located in a 

semi-infinite medium (3 = 0, d = 22l*, τ0 = 2.66⋅10$4 s, 
τf = 4.6⋅10$6 s, γ = 1 + Δ = 2.8).  The depths x of 
objects are indicated in the breaks of corresponding 
curves.  The dashed straight line corresponds to the 
macrohomogeneous semi-infinite medium.  In the 
insert, Δg is shown as a function of x. 
 

As can be seen from Fig. 2, the influence of the 
dynamic inhomogeneity is significant only for the finite 
range of variations of the time delay τ.  For sufficiently 
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small and large τ the correlation function is 
determined by the Brownian motion of particles 
which is the same inside and outside of the dynamic 
inhomogeneity.  For small values of τ this is 
connected with the different temporal behavior of the 
terms describing decorrelation caused by the 
Brownian and translational motion of the scatterers.  
For the Brownian motion, the decorrelation is 

∼ τ/τ0 (see Eq. (9)), whereas for translational 
motion it is ∼ τ/τf.  It is evident that for sufficiently 

short times, namely, for τ < τf
2
/τ0 the first 

contribution is larger than the second contribution, 
and the influence of the translational motion of the 
scatterers on the correlation function is insignificant. 

For large values of τ the behavior of the 
correlation function is explaned on the basis of the 
correspondence between the long correlation time and 
the short lengths of trajectories of multiply scattered 
photons.7  Really, because decorrelation due to a 
single scattering event decreases with the increase of 
τ for the Brownian and translational motions of 
scatterers, at small τ the noticeable contribution to 
radiation decorrelation comes only from the photons 
that undergo a large number of scattering events and 
hence have the longest trajectories.  For long τ, these 
photons are completely decorrelated and the behavior 
of the correlation function is determined by the 
photons that undergo a small number of scattering 
events and therefore have comparatively short 
trajectories.  Thus, with the increase of τ the 
behavior of g1(τ) is determined by the photons that 
have increasingly shorter trajectories.  Therefore, at 
long τ the photons that determine the behavior of 
g1(τ) simply do not reach the object located at the  
finite depth inside the medium. As a consequence,  
its influence on the correlation function is small for 
long τ. 

In Fig. 2 the maximum deviation Δg is also 
shown determined by formula (12) as a function of 
the depth x of the dynamic inhomogeneity.  For small 
x this parameter is sufficiently large.  However, with 
the increase of x it decreases fast and for x > (15$
20)l* it becomes less than 1% of g1. 

Finally, when the dynamic inhomogeneity has 
the capillary form, Fig. 3 shows the results of 
calculation of Δg as a function of the coordinate y for 
fixed x.  The width of the curve Δg(y) at half-
maximum is equal to the capillary diameter shown in 
this figure by the horizontal bar, to the accuracy of 
(1$2)l*.  Thus, the temporal correlation function can 
be used to estimate satisfactorily the object size 
inside the turbid medium. 

 

 
 
FIG. 3. The dependence of Δg is shown on the 
coordinate y for fixed depth x = 7l* of the cylindrical 
capillary and the rest of the parameters being the same 
as in Fig. 2.  The horizontal bar shows the diameter of 
the capillary. 

 

4. CONCLUSION 

 

In this paper, the feasibility is demonstrated of 
obtaining the information about dynamic 
inhomogeneities within the bulk of the medium by way 
of analysis of the correlation properties of the scattered 
radiation.  On the basis of our analysis, the following 
conclusions can be drawn: 

1. In turbid media the feasibility exists of 
determination of the character (Brownian or 
translational) of scatterers’ motion inside the dynamic 
inhomogeneity as well as its intensity based on the form 
of temporal correlation function of multiply scattered 
light measured at the boundary of the medium. 

2. An analysis of the temporal correlation 
functions allows one to determine the position and size 
of dynamic inhomogeneities to the accuracy of 1$2 
transport mean free path’s l*. 

3. The dynamic inhomogeneity has significant 
influence on the temporal autocorrelation function of 
backscattered light when the distance from it to the 
boundary of the medium does not exceed  
x = (15$20)l*. 
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