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The validity is established of the formula describing the relation between the 

intensity maxima of the  Fraunhofer diffraction pattern from a slit.  The formula is 

derived from the Huygens principle. Moreover, the absence of the secondary waves, 

which are necessary for application of this principle, is observed in the experiment. 

The formula for the intensities of maxima in the Fraunhofer diffraction pattern 

from the slit in the shadow zone, based on the interference of edge rays, has been 

additionally verified. Based on the edge ray interference, the formula has been 

derived describing the intensities of maxima of the diffraction pattern from the slit 

in the focal plane of an objective in terms of the intensity of light incident on the 

slit as functions of the focal distance. 
 

As known, light diffraction by an opening is 
tentatively derived into the Fresnel and Fraunhofer 
diffraction types.  In case of the Fraunhofer diffraction 
observed by the naked eye, a plane wave is incident on 
the slit S (Fig. 1) and secondary waves coming at the 
observation point P are also plane.  In this case, the 
condition1 k′ = (bcosϕ)2/4λL << 1 should be satisfied. 

 

 
FIG. 1. Scheme of the Fraunhofer diffraction by the slit. 
 

When the slit is illuminated by a linear source, the 
condition 
 

k′′ = b2/4λl <<  1 
 

should be satisfied in case of the Fraunhofer diffraction, 
where l is the distance from the source to the slit. 

For k′ <<  1, the phases of elementary secondary 
waves coming at the point P from the entire surface of 
the slit are determined by the phase distribution in the 
plane AB perpendicular to the line connecting the 
center of the slit with the point2 P. 

As known, this circumstance in combination with 
identical amplitudes of the elementary waves, owing to 
practically identical tilts of these waves, simplifies a 
solution to the Fraunhofer diffraction problem, 
reducing it to a summation of the elementary secondary 
waves over the entire surface of the slit.  In this case, 
the intensity distribution in the diffraction pattern is 
described by the formula2 
 

Iϕ = I0 ⎣
⎡

⎦
⎤sin2 

⎝
⎛

⎠
⎞bπ

λ
 sinϕ  / ⎝

⎛
⎠
⎞bπ

λ
 sinϕ  

2

, (1) 

 

where I0 is the intensity of light coming from the slit in 
the direction of the incident beam. 

Because I0 is not the intensity of light incident on 
the slit and their relationship is unknown, this formula 
cannot be used to compare the calculated and 
experimental values of Iϕ. 

Experiments described in Refs. 3 and 4 showed 
that the wavefront surface is not the source of the 
secondary waves and the perturbation at the point P, 
located in the shadow zone, is determinated by the 
interference of the edge waves coming from the 
opposite slit sides.  However, the edge waves, 
according to the experimental data of Ref. 5, are 
emitted not only by the screen edge, as follows from 
Refs. 6$8, but also by the adjacent deflection zone as a 
result of light ray deflection on both sides of the 
incident light direction. 

On these grounds, the formula for the diffraction 
intensity maxima in the diffraction pattern was derived 
in Ref. 4.  It has the form 
 

Jmax = 0.3274 λ L b
2
 Jc/[(kg λ L)2

 $ 2 b
4(1 + L/l)2)], (2) 

 

where Jc is the intensity of incident light in the 
diffraction pattern plane at the shadow boundary for 
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the remoted slit, being equal to the intensity of 
incident light at the slit edges when the incident wave 
is plane; kg is the number of half-waves in the 
geometric path difference between the edge rays coming 
from the opposite slit sides. 

In connection with the fact that already at the 
first moment edge ray 1′, deflecting from the slit edge, 
runs ahead of ray 3′, deflecting from the slit edge4$9 by 
λ/2, kg = 3, 5,... correspond to the maxima of the 
diffraction pattern. 

In case 2 b
4
 (1 + L/l)2 << (kg λ L)2, 

 

Jmax = B b
2 Jc/(kg

2 λ L), (3) 
 

B = 0.3274. 
The validity of Eq. (2) under conditions of the 

Fraunhofer diffraction is confirmed by the experimental 
data reported in Ref. 4 in Tables IV (b = 159 μm, 
l = 100 mm, L = 189 mm, k′ = 0.063, k′′ = 0.12), VI 
(b = 95.2 μm, l = 36.2 mm, L = 112 mm, k′ = 0.036, 
k′′ = 0.1), VII (b = 184 μm, L = 130.3 mm, l = ∞, and 
k′ = 0.122), and VIII (b = 48 μm, L = 99.5 mm, l = ∞, 
and k′ = 0.011). 

Proceeding from the conditions of formation of 
diffraction patterns from the slit in its shadow zone 
owing to the interference of the edge rays coming from 
the opposite edge zones, the difference between 
Fresnel’s and Fraunhofer’s diffraction patterns is that 
in the first case the interfering rays are coming at the 
points of the diffraction pattern approximately at two 
different angles and, because of the dependence of the 
edge light intensity on the angle of diffraction,10 have 
different intensities.  In case of the Fraunhofer 
diffraction, the interfering edge rays are parallel, have 
the same intensities, and therefore form more contrast 
pattern. 

In contrast with Eq. (1), formulas (2) and (3) 
relate the band intensities with the incident light 
intensity and the distance from the slit to the 
diffraction pattern. 

Let us reduce Eq. (1) to the form 
 

Iϕ = I0 sin2 0.5 kg π/(0.5 kg π)
2. (4) 

 

In the maxima of the diffraction pattern, 
sin2 0.5 kg π = 1.  Hence, the maximum intensities are 

inversely proportional to k2
g.  

As seen, formulas (3) and (4) demonstrate the 
same types of the dependence of the maximum 

intensities on k2
g.  This is a reason why formulas (1) 

and (4), in spite of their formal basis, characterize 
adequately the relationships of the intensities in the 
maxima. 

Formula (2) is unsuitable for calculation of the 
intensity of the central maximum formed due to the 
interference of the edge rays with the directly 
transmitted light.11 

In case of the Fraunhofer diffraction, the intensity 
of the central maximum cannot be calculated from 

formulas (3), (4), and (11) derived in Ref. 11, because 
of the violation of the inverse proportionality of the 
edge light amplitude to the deflection angles of the 
edge rays, underlying these formulas, for angles ≤0.07°. 

According to Eq. (1), 
 
I0(Jmax1) = 22.2 Jmax2. (5) 
 

In case of plane wave diffraction by the slit 48 μm 
wide (L = 99.5 mm and k′ = 0.011), Jmax1/Jmax2 was 
equal to 21.53.  Hence Eq. (5), as applied to this 
example, characterizes correctly the relation between 
Jmax1 and Jmax2. 

On the basis of Eq. (3), the intensity of the 
secondary maximum is proportional to b2. 

As seen from Table I, in case of Fraunhofer’s 
diffraction, the intensity of the central maximum is also 
proportional to b2.  Therefore, Eq. (5) should be valid 
not only for the given example, but also for other 
values of b and k′. 

 

TABLE I. 
 

bi/b1 (bi/b1)
2 

Jmax1i/Jmax11 ki
1/k

1
1 

75/50 2.25 57.2/25.7 = 2.23 $ 
100/50 4 105.5/25.7 = 4.1 $ 
150/50 9 236/25.7 = 9.18 $ 
225/50 20.25 509/25.7 = 19.8 $ 
300/50 36 917.5/25.7 = 35.7 0.193/0.005

 

(Here, b is in μm, λ = 0.53 μm, and J is in 
relative units.) 

 

In connection with this, to calculate Jmax1, Jmax2 
should be determined first from Eq. (3) and then it 
should be multiplied by 22.2. 

In this method of I0 determination, the 
opportunity arises to compare this value for different 
values of b and k′ with the intensity of light incident at 
the same points without slit. 

Let us substitute kg = 3 corresponding to max2 in 
Eq. (3) and multiply it by 22.2 in order to proceed to 
I0; after that, let us set this expression equal to Jc.   

On the basis of the obtained equality, the intensity 
of light on the axis of Fraunhofer’s pattern turns out to 
be equal to the intensity of the light incident on the 
slit for 
 

b = b0 = 1.2384 λL. (6) 
 

In the experiment with b1 = 0.192 mm, 
L = 130.3 mm, and λ = 0.53 μm, Jc/Jmax1 = 2.235.  To 
increase Jmax1 to Jc, it is necessary to widen the slit, 
considering the proportionality of Jmax1 to the 

parameter b2, up to b2 = 2.235b2
1
 = 0.287 mm.  This 

value is roughly equal to b0 = 1.238⋅0.53⋅10$3⋅130.3

 = 0.292 mm. 
Hence Eq. (6) is valid.  This formula, combined 

with the fact of proportionality between I0 and b2, can 
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be used to determine simply the variation of the light 
intensity on the axis of a parallel beam transmitted 
through the slit. 

To check additionally formulas (2) and (3), we 
compare the calculated light intensity, Jb with the 
experimental one (Jbe) at points b lying on both sides 
of the central maximum with kg = 1 and spaced at 
hb = λL/2b from the pattern axis. As follows from 
Ref. 4, at these points Δg = λ/2 between the edge 
rays coming from opposite sides of the slit is 
compensated by the initial path difference Δig = λ/2. 

According to Eq. (3), the light intensity at these 
points is 9 times larger than Jmax2.  Presented in 
Table II are the experimental data that confirm this.  
(Here, Jmax2e is the experimentally measured 
intensity Jmax2.) 

 
TABLE II. 

 

b, 
μm 

L, 
mm 

Jc, 
rel. 

units. 

Jbe, 
rel. 

units. 

Jmax2e, 
 
 

 Jbe 

Jmax2e 

 
hb, 
mm 

48 99.5 7132 15.51 1.74 8.9 0.6 
184 130.3 2560 33.5 3.8 8.82 0.192 

 
Practically all experimental results reported in 

Ref. 4 correspond to Fraunhofer’s diffraction.  
According to them, points b and the secondary 
maxima are located in the shadow zone of the slit. 

In the case of Fresnel’s diffraction, with the 
increase of k′ and k″, the point b and increasing 
number of maxima formed by the edge rays are 
located within the limits of slit projection, where the 
intensity distribution is determined by the 
interference of edge rays 1 and 2 (1′ and 2′) not only 
with each other, but also with directly transmitted 
rays 3 (Fig. 2).  Therefore, formula (2) is valid only 
for maxima in the shadow zone. 

Within the limits of the slit projection, the main 
roles in the interference with the directly transmitted 
rays play the least deflected edge rays (1′ and 2). For 
large k′ and k″, the contribution from rays 1 and 2′ 
becomes so small that the diffraction pattern from the 
slit is transformed into two mirror patterns from 
screens forming the slit.10   

Based on the interference of the edge waves 
coming from the opposite sides of the slit, we now 
derive the formulas characterizing the Fraunhofer 
diffraction in the focal plane of the objective 
(Fig. 3).   

Because the incident rays passing through the 
slit out of its edge deflection zones are collected by 
the objective on the beam axis practically entire 
diffraction pattern in the focal plane of the objective 
is caused by the interference of edge rays 1 and 2 
with each other.   

As indicated above, at the first moment ray 1 
runs ahead of ray 2 by Δig = λ/2. 

 
 

FIG. 2. Scheme of diffraction of the edge and directly 

transmitted rays for Fresnel’s diffraction by the slit. 

 

 
 

FIG. 3. Scheme of formation of Fraunhofer’s 

diffraction pattern from a slit in the objective focal 
plane. 
 

The geometric path difference between these rays 
is Δg = bsinϕ, tanϕ = Δg/bcosϕ. 

The distance from the pattern axis to the bands is 
h = f tanϕ = Δg f/bcosϕ.  From this, Δg = hbcosϕ/f.  
The total path difference between the edge rays 
Δt = (Δg $ Δig) = (Δg $ λ/2) = ktλ/2, where kt is the 
number of half waves that fall on the total path 
difference.  Therefore, Δg = (kt + 1)λ/2 and 
 
h = (kt + 1) λ f/2b cosϕ; (7) 
 
kt = 0, 2, 4... correspond to the secondary maxima.  
Because kt + 1 = kg, the secondary maxima are at 
k = 1, 3, 5... and kg = 1 correspond to points b on the 
sides of the central maximum observed by the naked eye. 

Because Δg gradually decreases from λ/2 to zero 
as the points of ray incidence are displaced from points 
b toward the pattern axis, under condition that 
Δig = λ/2 remains unchanged for small ϕ, Δt will 
increase from 0 to λ/2 and rays 1 and 2 will 
increasingly destroy each other.  Therefore, instead of 
the central maximum corresponding to the Fraunhofer 
diffraction observed by the naked eye, max0 must be 
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formed due to focusing of the directly transmitted rays 
on the beam axis, and on both sides of it, at the points 
b (kt = 0), maxb must be formed.  Between these 
maxima and max0, min0 must be formed.  They do not 
follow from Eq. (1). 

Their absence for perfectly plane incident wave 
and highly corrected objective may be explained only 
by the decrease of Δig for small ϕ. 

Because cosϕ = b2 $ Δ2
g/b, 

 

h = kg λ f/[2 b2 $ (kg λ/2)2]. (8) 
 
On the basis of Eq. (10) from Ref. 2, the intensity of 
edge rays 2 in the objective plane is  

Job = 0.0205 λ L Jc/H2
1
.  In accordance with the 

inverse proportionality of the intensity of edge rays 2 to 
L in the focal plane of the objective, without it the 
intensity is Jf = Job L/(L + f).   

Without objective, the edge light propagating 
within the angular limits 0−ϕ, spreads in the focal 
plane at the width H2, but owing to the objective, the 
width is contracted to h. 

Because H2 = (L + f) tanϕ and h = f tanϕ, H2/h = 
= (L + f)/f.  As a result, the intensity of edge rays 2 
in the focal plane is J2f = Job [L/(L + f)](L + f)/f = 
= Job L/f. Considering that H1/L = h/f, we obtain 
H1 = Lh/f and 
 

J2f = 
0.0205 λ L f2 L Jc

L2 h2 f
 = 

0.0205 λ f Jc

h2  . 

 
In this case, the amplitude of edge light 2 is 

a2 = 0.0205λfJc/h.   
Because rays 1 and 2 propagate in the same 

direction, a = a1 = a2.  In the maxima of the diffraction 
pattern, we have amax = 2a. 
Hence, 
 

Jmax = a2

max
 = 

0.08184 λ f Jc

h2  = 

= 
0.32736 [b2 $ (kg λ/2)2] Jc

k
2

g λ f
 (9) 

 
or approximately 
 

Jmax = 
0.3274 b2

 Jc

k2
g λ f

 . (10) 

 
From comparison of Eq. (3) with Eq. (10), we see 

that to proceed from the first formula to the second 
formula, it is suffice to substitute L by f in Eq. (3). 

The absence of the secondary waves propagating in 
the directions different from the direction of incident 
light propagation may be proved on the basis of the 
following considerations. 

In accordance with the integral Kirchhoff 
theorem,6 perturbation U(P) at the observation point 
P, caused by a point source P0, is determined by a 
surface integral along on arbitrary closed surface S0 
that includes the point P. At the same time, if S is the 
reference surface, the field at the point P is equal to 
the field of geometrical optics (GO) eikR/R, where R 
is the distance from the source to the point P. 

If the reference surface S is divided into parts A, 
B, and E, as was made by Kirchhoff,6 in accordance 
with the preceding, we have 
 

U(p) = ⌡⌠
A

 
 + ⌡⌠

b

 
 
 + ⌡⌠

e

 
 = eikR/R. (11) 

 

Let us neglect ⌡⌠
e

 
  on the basis of the Kirchhoff 

consideration and place an opaque screen on the surface 

B.  Because ⌡⌠
b

 
 
 = 0, to meet equality (11), it is 

necessary to decrease the right side by the integral 
along the surface B, when it is uncovered with the 
screen.  As a result, 
 

U(p) = ⌡⌠
A

 
 = eikR/R $ ⌡⌠

b

 
 , (12) 

 

that is, the perturbation at the point P is determined 
by the integral along the surface of the opening A in 
the screen. 

Further, without removal of the screen, we choose 
the surface B, similar to Rabinovich.16  Under these 
conditions, the closed surface S = A + B + E is 
uncovered with the screen.  Therefore, in accordance 

with Eq. (11), U(P) must be equal to ⌡⌠
A

 
 + ⌡⌠

b

 
 .  

However, when the opening A remains unchanged, 

U(P) is equal to ⌡⌠
A

 
 .  Hence, in the Rabinovich scheme 

the surface B also does not contribute to U(P), which 
is the clear evidence of the fact that the Huygens 
sources of secondary waves are virtual. 

Because the point sources located on the surface of 
the opening are of the same kind as the sources on the 
surface B, they are also virtual. Nevertheless, the 
perturbation from the opening A at the point P is 
nonzero and according to the experiment is determined 

by ⌡⌠
A

 
 . Hence the effect of the virtual sources on the 

surface A, when they play roles of real sources, is 
equivalent to the effect of real sources at the point P, 
namely, of the sources of incident and edge waves. 
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When the virtual point sources on the surfaces A 
and B are considered as the real sources, the surface 
integral along A, according to Eq. (12), is equal to a 

sum of the GO field and the field determined as ⌡⌠
b

 
 . 

As established by Rabinovich, the last integral is 
equal to a curvilinear integral along the opening edge.  
However, this does not prove the existence of the edge 
wave. Laue13 considered the Rabinovich transform as a 
calculation procedure that allows one to determine the 
edge wave type such that the result of its effect with 
the incident light coincides with the result of 
Kirchhoff’s theory. 

 
CONCLUSION 

 
Our results, together with the facts published 

earlier, are the evidence of the validity of the 
Huygens principle formalism in optical wavelength 
range and the validity of conclusions from the strict 
theory of diffraction phenomena caused by the 
interference of the edge waves with each other or 
with the incident light. 

The formulas derived here on this basis have 
allowed us to express the intensity maxima of the 
diffraction pattern from the slit not only through the 
intensity of the central maximum, but also through 
the intensity of the light incident on the slit. 
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