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A method of positive spectral filtering (PSF) is suggested as a mathematical 
approach to an analysis of nonnegative random signals, which allows one to select 
the components with different characteristic fluctuation times.  The method is 
efficient for highly fluctuating signals, including concentration fluctuations of 
pollutants in the atmosphere.  An example is given of the separation of 
contributions from near and far sources of pollution in the urban atmosphere. 

 

1. INTRODUCTION 

 

An analysis of gas and aerosol pollutants in the 
atmosphere is a special case of a wide class of 
problems, where an investigated signal is a 
nonnegative random function of time (often 
multidimensional) and is formed by a superposition of 
several nonnegative components from different 
sources.  One of the analysis problem is to select 
these components. 

In case of multidimensional signals, statistical 
methods are used based on an analysis of covariance 
of multidimensional signals, such as the factor 
analysis or the method of principal components.  
However, these methods are not adequate for the 
problem, because they do not consider the positive 
determinacy of the signal and therefore are correct 
only when the fluctuations are small in comparison 
with the mean signal value, whereas for many 
problems of this class, in particular, for the 
atmosphere, the opposite is true. 

In the last few years, attempts have been 
undertaken to construct mathematical methods 
adequate for these problems.  It is worth mention 
Paatero1,2 whose works are devoted to the 
factorization of positively determined 
multidimensional signals. His approach considers 
correctly a superposition of nonnegative components 
and is based on an analysis of an entire temporal 
series of a multidimensional signal instead of the 
covariance matrix.  The components are selected by 
solving the extremum problem with some restrictions.  
However, in these papers the information contained 
in the temporal behavior of the signal is not used, 
that is, the signal is considered as a disordered 
sample of a random variable.  It is clear that the 
signal measured as a function of time in a given point 
contains more information than a simple disordered 
sample.  For example, signals from different sources 
may have different fluctuation spectra. 

In our particular case, the concentration of a 
pollutant in a local point is examined.  It represents 
the random function of time, and the character of 
turbulent mixing in the atmosphere is such that the 
scale of concentration pulsations is usually 
comparable with the average concentration.  In many 
cases, it is several times higher. 

At present, the theory of turbulent transport of 
pollutants cannot unambiguously tackle the question of 
how the concentration fluctuations depend on the 
distance from the source or the transit time to the 
detector; however, the totality of theoretical and 
experimental data reported in Refs. 3$5 permits one to 
formulate the following quantitative regularities: 

1. Pollutant concentration from local sources usually 
has a character of pulsations vanishing with time (the 
intermittence effect). 

2. Relative amplitude of concentration fluctuations 
does not decrease or decreases very slowly with the 
transit time (distance), although its average value 
decreases fast. 

3. Autocorrelation time of fluctuations increases with 
the transit time (distance), that is, the response œspreadsB 
with time and its spectrum shifts to lower frequencies. 

The spectral analysis can be used to select the signal 
components of different nature, for example, to select the 
global background and the contribution from local 
sources.  However, standard methods like, for example, 
the Fourier transform, are inefficient in our case, because 
they do not consider the constant sign of the signal. 
B elow an example is given which illustrates this 
statement. 

In the present paper, an approach is suggested that 
allows us to select the components of positively 
determined random signals with different characteristic 
fluctuation times, namely, the method of positive spectral 
filtration (PSF). The method is based on a priori 
information about signals.  It considers in the explicit 
form the fundamental property of sign constancy.  This 
approach is efficient when the fluctuation amplitude is 
comparable with the average value of the signal. 
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2. NONNEGATIVE SPECTRAL TRANSFORM IN 

THE GENERAL CASE 
 
In general, we can consider the problem as 

follows.  Let y(t) ≥ 0 be the measured signal and 
normalized nonnegative kernel g(τ, ω) of the linear 
convolution operator 

 

( ) ( ) ( )G
ω
ψ ψ τ τ ω τt t g= −

−∞

∞

∫ , d  (1) 

 
be specified from a priori considerations. 

It is assumed that the signal y(t) can be 
represented as integral convolution transform of 
function ψ(t, ω) tentatively named œspectralB 

 

( )y t t( ) ,=

∞

∫Gω
ψ ω ωd

0

 . (2) 

 
B y analogy with the Fourier transform, the 

parameter ω is named the frequency.  Evidently, the 
inverse problem, namely, determining ψ from y(t) 
cannot have the unique solution. 

 
3. KERNEL OF SPECTRAL TRANSFORM 

 

A set of complete and orthogonal (or at least 
linearly independent) functions is commonly used as a 
kernel for the signal transform.  The first property is 
required to transform an arbitrary signal. The second 
property is necessary to obtain the unique transform.  
In this paper, we suggest a set of positively determined 
functions chosen on the basis of a priori information 
about the signal nature.  This set is complete in the 
examined class of signals to a measure to which a priori 
assumptions are valid.  As to the linear independence, 
it is not necessary if the uniqueness is achieved by any 
other means.  A set of possible signal transforms can be 
ordered by certain preferred criteria and then the choice 
of the unique transform can be made by solving the 
extremum problem on this set. 

Thus, the shape of the kernel g(t, ω) can be 
chosen based on the model of the examined process.  If, 
for example, this process is isotropic diffusion, the set 
of the Gauss functions is naturally taken as g(t, ω) and 
their reciprocal width as the parameter ω.  In any case, 
we assume that the kernel functions have the following 
properties: 

 

g(t, ω) ≥ 0,   g(t, ω) → 0  for   t → ± ∞ ,   
 

g t g t t( , ) ( , )ω ω≡ =

−∞

∞

∫ d 1. (3) 

 

The symbol | | here and further denotes the integral 
measure of the function.  Further for arbitrary ω1  
and ω2, if ω1 > ω2, there exists ϕ(t) ≥ 0 such that 

( ) ( )g t t,ω ϕω2 1
= G , (4) 

 
that is, a wider function can be represented as  
a convolution of narrow functions.  The last property is 
characteristic of the transfer functions  
and, in particular, the Gauss function mentioned above. 
 

4. PROBLEM FORMATION 

 
Let the signal be represented as the convolution 

with the known kernel G and unknown spectral 
function ψ(t, ω) ≥ 0.  We want to use this transform to 
decompose, if possible, the initial signal into the 
components with different ω.  The simplest problem of 
this type is the selection of low frequencies, that is, the 
selection of the low-frequency component from y(t), 
which can be represented by the spectrum with the 
frequencies no higher than the given frequency Ω 

 

y t t t( ) ( , ) ( )= +∫Gωψ ω ωd
0

Ω

,   f 

′(t) ≥ 0 . (5) 

 
If this is possible for |ψ(t, ω)| > 0, we speak that y(t) 
comprises the frequencies lower than and equal to Ω.  

If the residual function f 

′(t) does not comprise such 
frequencies, we speak that Eq. (5) is a solution  
to the problem of low-frequency filtration of the  
signal y(t). 

It is immediately clear that Eq. (5) cannot have 
the unique solution, at least by virtue of property (4); 
however, this property allows one to write this problem 
in another form.  Really, by virtue of property (4) for 
any ψ(t, ω) and Ω, ϕ(t) ≥ 0 can be found such that 

 

( ) ( )G Gωψ ω ω ϕt t, d

0

Ω

Ω∫ = , (6) 

 
that is, all the components with frequencies lower than  
Ω can be reduced to the frequency Ω.  This allows one 
to write the problem of low-frequency filtration in the 
form 
 

( ) ( ) ( ) ( ) ( )

( ) ( )
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ϕ ' , ' ,

, '0,     0.

 (7) 

 

We name f(t, Ω) the integral low-frequency (IL) 
PSF component of the signal for the cutoff frequency 
Ω. The ideal solution to the problem would be 
constructing the algorithm that can be used to obtain 
by the certain reasonable criteria the unique 
differentiable function f(t, ω), which monotonically 
increases with ω.  In this case, the signal can be 
represented in the form 

( )
( )

y t
f t

=

∞

∫
∂ ω

∂ω
ω

,
d

0
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and the component for arbitrary frequency range 
(ω1, ω2) can be obtained through integration between 
these limits.  How this can be done, remains to be seen.  
B ut in any case, we can formulate the extremum 
criteria to solve correctly problem (7). 
 

5. ESTIMATE FROM ABOVE OF THE LOW-

FREQUENCY COMPONENT AND ITS SPECTRUM 
 

Let the function f+(t, ω), which minimizes ⏐f 

′⏐ in 
Eq. (7) at given ω, be referred to as the estimate from 
above of the average value of the corresponding low-
frequency (LF) component.  It is obvious that the 

minimum of ⏐f 

′⏐ corresponds to the maxima of ⏐ϕ⏐ 
and ⏐f⏐.  Let us introduce contracted notations 

f
ω
 = f+(t, ω) = G

ω
ϕ
ω
, f  

′
ω
 = y(t) $ f

ω
 and formulate the 

main properties of this estimate. 

a) From Eq. (3), it follows that ⏐ϕ
ω
(t)⏐= ⏐ 

f
ω
(t)⏐. 

b) From Eqs. (4) and (6), it can be shown that if 

a ≥ b, then⏐ϕa⏐ ≥ ⏐ϕb⏐ and correspondingly ⏐f  

′
b⏐≥⏐f  

′
a⏐.  

Unfortunately, we cannot state that under the same 
conditions ϕa(t) ≥ ϕb(t) for any t, that is, the estimate 
from above for the average value, strictly speaking, is 
not equal to the local estimate from above.  
Nevertheless, when y(t) meets reasonable requirements 
to its smoothness, it can be shown that 

c) f  

′
ω
 (t) → 0 and ⏐f  

′
ω
⏐ → 0 for ω → 0. 

The problem of finding f
ω
 having the maximum 

modulus for any ω is a standard problem of linear 
programming and usually has the unique solution.  
Thus, the problem of low-frequency filtration can be 
solved correctly.  The above estimate gives no way of 
separating the signal correctly into its low- and high-
frequency components, but it can be used to estimate 
from above the low-frequency component and to 
estimate the frequency spectrum of the signal. 

Let us specify the interval [ω1, ω2] for which we 
want to find the PSF spectrum of the signal y(t) and 

to determine f
ω
(t) for any ω from this interval.  The 

dependence S(ω) = ⏐f
ω
(t)⏐ so obtained we name the 

estimate from above for the mean value of the integral 
spectrum of the function y(t).  From the above 
properties, it follows that S(ω) is the monotonically 
increasing function, with S(ω) → ⏐y(t)⏐ for ω → ∞.  
The spectrum so obtained can be used for qualitative 
analysis of the signal.  We can demonstrate this with a 
very simple example. 

 

6. DEMONSTRATION EXAMPLE 
 

Let the signal be a sum of two random signals 
from different sources located at different distances 
from the measurement point.  A response to the 
instantaneous emission from the source recorded in the 
measurement point is determined by the diffusion 
spread, and the characteristic response time depends on 
the distance to the source.  The fluctuating signal from 
each source can be represented as a superposition of a 

random set of these responses.  Let the elementary 
response be the Gauss function whose width for each 
source is individual.  In Fig. 1a, the example is shown 
of simulation of this signal from two components 
(details are indicated under Fig. 1).  The aim of our 
analysis in ideal is the reconstruction of the original 
signal components.  In Fig. 1c the result of standard 
spectral selection by the Fourier method is presented.  
It can be seen that the method gives no way of 
obtaining more than one positively determined 
component.  The information about the mean value of 
the high-frequency component is lost completely. 

 

 
 

FIG. 1. Demonstration example of the signal formed 
by the Gauss peaks of different widths.  The signal is 
formed by the Gauss peaks with widths of 20 s (slow 
signal) and 10 peaks with widths of 4 s (fast signal).  
Peaks have random amplitudes and location in the 
abscissa. Boundary conditions are periodical.  a) Total 
signal, b) fast and slow components, c) result of the 
Fourier selection, and d) result of the PSF selection. 
 

Now we examine the potentialities of the PSF 
method.  First we derive, as described above, the 
estimate from above of the integral spectrum of the 
function.  The spectrum S(ω) for the signal shown in 
Fig. 1 is presented in Fig. 2.  In the spectrum, we can 
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see the well-defined plateau at low frequencies near 
ω = 0.05 s$1.  This is the natural boundary for the 

integral selection of the two frequency components f
ω
  

and f ′
ω
.  These components are shown in Fig. 1d.  It 

can be seen that they approximate well the original 
components. 

 

 
 

FIG. 2.  Spectrum of the estimate from above of the 
LF component of the PSF signal shown in Fig. 1.  
The cutoff frequency is indicated by the arrow. 

 

7. APPLICATION OF THE PSF METHOD TO AN 

ANALYSIS OF REAL DATA 
 

The data to be analyzed were borrowed from the 
results of investigation of the atmospheric pollution in 
Novosibirsk with the help of the ICKC mobile 
laboratory.6  Measurements were performed at the center 
of the city in December 1995.  For our analysis, we 
selected the data on the concentration of SO2 and NOx 
gas pollutants recorded at night from 3 to 4 December.  
The raw data are shown in Fig. 3. 

From Fig. 3, it can be seen that the pollution 
concentration decreases at night and that fast (with a 
duration of several minutes) peaks are manifested against 
the background slow signal caused likely by near traffic.  
We can identify the period (approximately from midnight 
to 7:30 a.m.) when the traffic contribution was relatively 
small. 

For the spectral selection of signals, two 
characteristic times were chosen: 60 min for the slow 
trend and 5 min for cutoff of fast fluctuations.  First, we 
selected the low-frequency component (with ω$1

 = 60 min) 
and after that the remainder was subject to a new 
selection with ω$1 = 5 min.  Thus, the low-, middle-, and 
high-frequency signal components shown in Fig. 4 were 
obtained. 

 

 
FIG. 3.  Temporal dependence of SO2 and NOx concentrations measured at the center of Novosibirsk at night from 

3 to 4 December 1995. 
 

It can be seen from Fig. 4 that the low-frequency 
component is symbatic in the morning and the middle-
frequency components are well correlated at night.  The 
correlation analysis of the components yields the 
following results (see Table I). 

Without going into detailed analysis, we can speak 
that the spectral selection allows us to select the signal 
of smoke plumes against the slowly varying background 
and fast fluctuations caused by the near  
 

sources.  After the selection of middle-frequency 
component, a strong correlation between SO2 and NOx 
concentrations was established (see Table I), which 
permits us to determine the gas composition of this 
component, namely, to establish the ratio SO2/NOx = 
= 0.074 ± 0.006 (linear regression for the middle-frequency 
component from 0:00 to 7:30).  The characteristic time 
of fluctuations and gas composition permit us to 
identify this signal with a plume of a small boiler. 
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FIG. 4.  Result of frequency selection of the data presented in Fig. 3 by the PSF method: a) high-frequency 
component; b) middle-frequency component; c) low-frequency component.  Characteristic times are 5 and 60 min.  

Concentrations are in ppb. 
 

TABLE I.  Correlation coefficients between SO2 and 
NOx. 
 

Component Entire interval Night (0:00$7:30)

Low-frequency  0.73  0.13 
Middle-frequency  0.50  0.84 
High-frequency  0.07 $0.17 
Initial signal  0.48  0.35 

 
On the basis of this approach, a computer program 

was developed.  It is used in the Institute of Chemical 
Kinetics and Combustion SB  RAS for studying the 
dynamics of gas and aerosol pollution in the atmosphere 
with characteristic times from several minutes to 
several months. 

From the given examples it can be seen that this 
approach, in spite of its inexactness, can be efficient for 
frequency filtration of positively determined and 
strongly fluctuating signals and appears worthy of 
further development.  Its main disadvantage now is  
 

that the estimation of the HF-component f
ω
 is 

principally from one side and therefore it is incorrect to 

treat the residual function f 

′ as a corresponding high-
frequency component.  This shows us the direction of 
further development as a search for approaches that 
will allow us to obtain the estimate from two sides. 
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