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The angular instrumental function of the sun aureole photometer is 
calculated for a set of scattering angles ϕ, and several kinds of the photometer 
geometry.  The function takes into account the finiteness of angular dimensions 
of the sun and the device field of view.  The equality of angular dimensions of 
the sun and the field of view is the condition of the optimum geometry.  In 
this case, the instrumental function does not depend on the scattering angle ϕ 

in the range ϕ = 1–10°, and the distortions of the aureole scattering phase 
functions detected μ(ϕ, λ) are small.  Numerical analysis of the sun 
spectrophotometer designed at the Institute for Atmospheric Physics 
demonstrates that the recorded μ(ϕ, λ) contain information about particles of 
the size up to r ∼– 50–60 μm with moderate errors (~10–15%).  The data of two 
complex experiments in 1992 and 1994 have been inverted based on the 
analysis performed.  It is established that relatively narrow single-mode 
particle size distributions prevail in the translucent clouds.  The characteristic 
dimensions are r ∼– 15–50 μm in Ci clouds; r ∼– 20 μm for As clouds; r ∼– 2–
3 μm for Ac clouds.  The ice content was within the range 1–30 g/m2.  The 
distributions are multimode for the cases of multilayer cloudiness. 

 

INTRODUCTION 
 

It is well-known that particles with the 
characteristic size of a few tens of microns are present 
in cirrus clouds.  Their relative content is sufficient to 
influence the clouds’ optics significantly.  This 
influence can be easily estimated by a narrow aureole 
created by a cirrus cloud around the moon.  The 
angular size of the moon gives a frame for visual 
estimation of the aureole width Δϕ.  This width varies 
from a half to one and a half of the moon’s radius.  Let 
the position of the first zero of the Bessel function 
describing the aureole peak of the scattering phase 
function be taken as the width Δϕ for a particle with a 
dimensionless radius ρ = 2πr/λ (λ is the light 
wavelength): ρΔϕ ∼$ 4.  Then, taking into account that 
the moon's radius δr ∼$ 1/4° ∼$ 1/220, we obtain the 
following expression for the particles’ radius: 
 

r ∼$ 130λ/Δϕ, (1) 

 

where Δϕ is given in units of the moon’s radius. 
The visual estimation corresponds approximately 

to λ = 0.5 μm what yields the value of the 
characteristic dimensions of the particles r ∼$ 40–
150 μm.  Thus, the aureole peak of the brightness 
angular distribution is formed due to very large 
particles. 

This paper consists of two main parts.  The 
methodical part is devoted to the study of the 
possibilities of at least estimating the quantity of 
such particles.  The other part contains the analysis 
of data on the brightness scattering phase functions 
of the sun aureole.  The data were obtained during 
the complex cloud experiments at the Zvenigorod 
Measurement Site of the Institute for Atmospheric 
Physics in 1992 and 1994.  The first section of the 
methodical part is devoted to the calculation of the 
instrumental function of the sun photometer, and the 
second section describes the adaptation of the inverse 
problem solution to the device. 

The possibility of using the sun aureole method 
for studying translucent clouds was demonstrated in 
Ref. 1.  There are formulated the requirements to the 
equipment and the restrictions upon the types of 
cloudiness.  Let us remind that the sun aureole 
spectrophotometer was created as a device for 
studying the coarse tropospheric aerosol.  Its main 
parameters are: four operating wavelengths λ1 = 0.46; 
0.54; 1.2; 1.55 μm; operating angular range ϕ = 2–
10°; angular scanning is discrete.  The detection time 
of the spectral dependence (for ϕ = const) is a few 
seconds, the full recording time (depending on the 
set of angles ϕj) is not more than 5 min. 

In dust emissions and background conditions, the 
size of particles that make noticeable contributions to 
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their total volume and optics, varies from a few tenth 
of micron to approximately 10–15 μm, and the device’s 
parameters well suit this size range.  In translucent 
clouds, the dimensions of optically active particles vary 
from the fractions of a micron to hundred microns in 
Ci cloud, as it was shown above.  “Pure” types of 
cloudiness (perhaps excluding Ci) are realized rather 
seldom, and usually one deals with a multilayer 
cloudiness of different types including cirruses as a 
rule.  Thus, both experimental data and the technique 
of their conversion must at least recognize the presence 
of particles characteristic of Ci.  We’d like to 
emphasize that these particles are obviously 
nonspherical, so one can estimate only the total volume 
of particles and the characteristic size even with an 
ideal device and technique. The inversion of aureole 
scattering phase function simulates real particles by 
spheres whose cross section is approximately equal to 
that of real particles. Their cross section is 
perpendicular to the sighting ray, i.e., it depends on 
the particles’ orientation. The calculations in terms of 
the particles’ volume (say, prisms or columns) can 
yield an error up to two times.  Approximately the 
same error can appear in the characteristic size. The 
formula (1) shows two possibilities to extend the range 
of particles’ dimensions, measurable with the device, to 
larger radii r. One may increase the maximum 
wavelength of the spectral range and decrease the 
initial angle ϕmin. The first way is connected with a 
significant redesign of the device and is possible as a 
prospect. As for the second way, it is necessary to 
know whether the relation between the angular 
dimension of the Sun 2Δν and the  
 

 

initial angle ϕmin/ν ∼– 10 (what is realized in our 
device), is a limiting value from the viewpoint of 
distortions of the angular behavior of the scattering 
phase function μ(ϕ) recorded. 
 
THE INSTRUMENTAL FUNCTION OF THE SUN 

PHOTOMETER 
 

The attempts to estimate the errors due to finite 
angular dimension of the source and the photometer's 
field of view in measuring μ(ϕ) were made in several 
papers.  In Ref. 2, the calculations were performed for 
the set of μ(ϕ) for aerosol with the inversely power law 
of particle size distribution. The results were presented 
in the form that doesn’t allow one to distinguish the 
influence of “angular divergence” of the “source –
 device” system. Our calculations were from the very 
beginning aimed at obtaining such a device 
characteristic that could be defined as the angular 
instrumental function A(ϕ – ϕ0) of the “Sun – 
photometer” system.  From its dependence on the angle 
ϕ0 (the angle between the photometer axis and the 
direction to the center of the Sun) and the device’s 
field of view 2δ, one obtains a ground for the choice of 
the initial angle of the range ϕmin and estimate the 
errors due to finite A(ϕ $ ϕ0) value. In principle, 
knowledge of A makes it possible to reconstruct the 
true angular behavior of brightness μ(ϕ) from the 
measured one μ*(ϕ) using the classic definition of 
A(ϕ $ ϕ0) 
 

μ*(ϕ0) = ⌡⌠
 
 `(ϕ $ ϕ0) μ(ϕ) äϕ. (2) 

 

 
FIG. 1.  The scheme for calculation of the instrumental function of the sun photometer.  In the plane 
perpendicular to the sighting line from the Sun center to the photometer, R1 and S1 are the radius and the 
Sun projection area; R2 and S2 are the radius and the projection area of the photometer field of view; ϕ0 is 
the angle between the direction to the center of the Sun and the optical axis of the photometer; γ is the angle 
between the centers of the areal elements, i.e., the current scattering angle. 
 

The general formula (2) for the recorded μ(ϕ) can 
be considerably simplified in the domain of the sun 
aureole because the problem can be solved in a plane 
perpendicular to the line from the center of the Sun to 
the photometer by projecting the discs of the Sun and 
the photometer’s field of view onto it (Fig. 1).  Then 
we can introduce the following terms in the plane: 
 

radius R1 and area S1 of the Sun, radius R2 and the 
area S2 of the photometer’s field of view.  For the 
value μ* averaged over the sun disc and the 
photometer's field of view we obtain 
 

μ*(ϕ0) = 
1

S1S2

 ⌡⌠
S1

 
 dS1 ⌡⌠

S2

 
 μ(γ) dS2. (3) 
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The angle γ (see Fig. 1) is the "current" 
scattering angle between the irradiating element dS1 
of the Sun and the element dS2 of the field of view.  
It is the function A(γ $ ϕ0), the probability density 
function of the scattering angle γ at the scattering 
angle ϕ0, is defined as the resulting or the full 
instrumental function of the “Sun – photometer” 
system.  For brevity, we'll merely call it the 
instrumental function. 

The calculation scheme was as follows.  All the 
values γ, ϕ0, R2 were measured in the units of the sun 
radius R1.  The domain of γ from ϕ0 – 2R1 to 
ϕ0 + 2R1 was divided into k intervals Δγ, and A(γ –
 ϕ0) was determined as the frequency of γ being in 
the corresponding interval Δγ averaged over the areas 
S1 and S2.  Simultaneously, μ* and the mean value 
<γ> were calculated for making a comparison by 
formulas from Ref. 2. 

The sun photometer was designed so that the 

angular size of its field of view was 2δ ∼$ 35′, i.e.,  

it was approximately equal to the angular diameter  
of the sun disc.  This choice significantly simplified  
the scheme of the absolute (sr–1) calibration of the 
device.  Analysis of the function A(γ $ ϕ) calculated 
demonstrates that symmetry also plays a positive part 
in the formation of the instrumental function: the 
condition R1 = R2 guaranteed the symmetry of  
A(γ $ ϕ) in the whole range of scattering angles.  As 
was mentioned in Ref. 1, symmetric instrumental 
functions distort the scattering phase functions to a 
lower degree as compared with the asymmetric ones, 
even for the cases of a very steep angular behavior of 
μ(ϕ).  These errors are proportional to (δϕ/ϕ)3 where 
δϕ is the halfwidth of A(γ $ ϕ) because the symmetry 
"extinguishes" even terms of the expansion of μ(ϕ) 
into a series over ϕ. 

The function A(γ $ ϕ) was calculated for the 
angles ϕ0 = 1; 1.5; 2; 4° and the field of view radii 
R2 = (1.0; 0.5; 0.3)R1. One can see that the scheme 
from Fig. 1 is invertible with respect to R1 and R2, so 
the variants of R2 > R1 (the field of view is broader than 
the sun disc) can be obtained by scaling the angle ϕ0. 

Some of results calculated are presented in Fig. 2. 
Curves 1 and 3 are obtained for R1 = R2 and ϕ0 = 1°, 
ϕ0 = 2° respectively.  The angle γ $ ϕ0 is presented by 
the x-axis in the sun radius units (this makes it 
possible to join the curves A(γ $ ϕ) for clearness). 
Figure 2 is an illustration to the fact that a statement 
evident on the face of it but not verified by a rigorous 
calculation can be false.  It is the calculation of the 
instrumental function that permits one to state that the 
function is similar for the geometric scattering angles 
ϕ0 = 1° and ϕ0 = 2°, i.e., from the viewpoint of angular 
resolution of the device, ϕ0 = 1° can be used on the 
same basis as ϕ0 = 2°. The curves A(γ $ ϕ) for larger 
scattering angles are not shown in the Figure as they 
merely coincide with A(γ – 2°). One can assume, to a 
great degree of accuracy, that the function A(γ – ϕ) 
may be approximated by a triangular shaped curve. 
 

 
FIG. 2.  Instrumental functions A(γ $ ϕ0) as 
functions of the geometric scattering angle ϕ0 and 
the relationship of angular size R1 of the Sun and 
the photometer field of view R2.  ϕ0 = 1 and 2°, 
R1 = R2 (1, 3); ϕ = 1°, R2 = 0.3R1 (2). 
 

The calculations of the instrumental function 
have revealed one of the causes of the distortions of 
the brightness angular distribution μ(ϕ : the 
weighted mean scattering angle <γ> is always greater 
than ϕ0.  Their difference increases with a decrease in 
ϕ0 relatively and absolutely.  For ϕ0 = 1°, it is about 
5 minutes of arc.  The cause of this effect can be 
easily understood from Fig. 1. 

The interference from direct solar radiation 
scattered in the device is one more reason to restrict 
ourselves by the value ϕmin = 2° in the choice of the 
initial angle ϕmin. This noise rapidly (almost 
exponentially) increases with a decrease of the 
scattering angle. It was possible to reduce the 
interference level to a few hundredths of sr–1 in terms 
of μ(ϕ).  For ϕ = 1.5°, the illuminating level is about a 
tenth of sr–1, and for ϕ = 1°, it is two or three tenths 
of sr–1. Under conditions of clear sky, it is a significant 
error, but this interference is tolerable for the 
scattering phase functions μ(ϕ) of clouds whose level is 
a few units for ϕ = 1° as the minimum. 

The curve 2 in Fig. 2 is calculated for the 
photometer whose field of view R2 = 0.3R1.  It is easy 
to see that a significant (three-fold) narrowing of the 
photometer’s field of view insignificantly decreased the 
halfwidth of the instrumental function but a 
considerably deformed the function: the shape of A(γ $
 ϕ) became closer to rectangular with a very 
pronounced asymmetry. 

At R2 → 0 we have a narrow-angle photometer 
whose field of view is much less than the angular size 
of the Sun.  The instrumental functions corresponding 
to this scheme (Fig. 3) were calculated for the angles 
ϕ0 = 1° and 2°.  Both curves have strong asymmetry, 
the maximum of A(γ $ ϕ) is also displaced to larger 
angles, and its halfwidth slightly differs from that in 
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the scheme with R1 = R2 and equals approximately to 
a quarter of a degree. 

 

 
FIG. 3.  Instrumental functions of the narrow angle 
(R2 ∼– 0) photometer ϕ0 = 1° (1); ϕ0 = 2° (2). 

 
Distortions introduced by instrumental function 

of the described types were analyzed for the aureole 
portion of the scattering phase function using several 
distributions simulating large- and small-drop clouds 
in the range of modal drop dimensions r = 3–30 μm.  
The function μ(γ) is very steep and its tabular 
definition yields a great error in calculations because 
the angle γ varies almost continuously.  So, to 
improve the accuracy of calculations in the angle 
range γ = 0–10°, interpolation polynomials were 
constructed for model ln(μ(γ). 

The comparison of calculated μ* performed by 
formulas (3) and (2) demonstrated that they coincide 
up to a few tenths of a percent.  Since the question on 
the accuracy of the approximation for Fig. 1 (“plane” 
geometry) was still open, the calculations by this 
scheme were compared with those performed by 
rigorous formulas2 by M.A. Sviridenkov.  The 
estimations of μ*(ϕ) yielded the same type of distortion 
by the device for three scattering angles: the 
overestimation of μ*.  These estimations differed not 
more than by 1–2%.  So the correctness of the scheme 
in Fig. 1 was justified.  As to distortions caused by 
imperfectness of A(γ $ ϕ), they were not more than 
+5% for most of conceivable scattering phase function 
of a cloud at the angle ϕ = 1°.  The errors decrease 
with the increase of the scattering angle. 

Let us summarize the first part of the section.  
The exact calculation of the brightness angular 
behavior averaged over the sun disc and the field of 
view of the photometer and its determination by 
simple convolution of μ(ϕ) with the instrumental 
function of the device yield coinciding results.  The 
errors introduced by A(γ $ ϕ) add up to five percent 
in detecting brightness angular behavior with a steep 
angular behavior (of the cloud type).  The symmetric 
scheme when the angular dimensions of the field of 

view and the sun coincide is optimal for the 
photometer.  In this case the shape and halfwidth of 
the function A(γ – ϕ) in fact do not depend on the 
scattering angle up to ϕ = 1°.  This makes it possible 
to widen the range of operating angles of solar 
photometers to ϕ = 1°.  The maximum of the 
instrumental function (and the weighted mean of the 
scattering angle <γ>) is always shifted to larger 
angles ϕ (as the effective angle γ is displaced to 
smaller ϕ for rapidly decreasing μ).  The shift is 
about a few angular minutes and decreases with the 
increase of the angle ϕ.  The instrumental functions 
become asymmetric for narrow-angle photometers but 
their halfwidth decreases insignificantly; in principle, 
knowledge of A(γ – ϕ) allows one to reconstruct the 
true behavior of μ(ϕ). 

In conclusion, let us note that the use of as 
small angles as possible is preferable for the reasons 
of decreasing errors due to multiple scattering.5 
 

THE TECHNIQUE OF THE INVERSE  

PROBLEM SOLUTION 
 

Thus, the range of size of large cloud particles 
detectable with a photometer turned out to be twice 
as wide as compared with the initially supposed.  But 
the examination of earlier inversion results required 
accurate analysis of methods and possibilities for 
inversion of the brightness in aureole angular region.  
The range of particle size for which the kernel of the 
inverse problem Kij was calculated, the 
discretization, and the number of points in the 
division of the interval Δr were developed in model 
calculations of μ(ϕ) for narrow lognormal 
distributions with ν2 = 0.05–0.1 (sonde 
distributions).  First of all, it was necessary to find 
the boundary of the size region where large particles 
can yet be distinguished.  By this boundary, we mean 
the following.  The structure of the kernel Kij is as 
follows: the first measurement of the matrix Kij 
(conventionally, the line i) forms a set of four 
wavelengths for five scattering angles (total, 
m = 20), the second one forms the columns j, i.e. 
radii rj of the division points for the range of 
reconstructed dimensions for the distribution of 
volumes V(rj).  The calculations of K demonstrated 
that, for the standard angle set ϕ = 2–10°, the lines 
become quasiparallel (i.e., proportional) already at 
rj > 50 even for Δrj = 10–15, and the dependence on 
λ and ϕ weakens in the lines.  Mathematically, this 
means that the problem is ill-posed; physically, this 
means that the particles from the size intervals Δrj 
and Δrj+1 of the distribution V(r) are 
indistinguishable.  It is evident that this appears as 
early as the measurement errors in μ(ϕ) become large.  
One of the inevitable causes of the errors is the 
discretization of the kernel of the initial equation of 
the inverse problem.  So, even the exact theoretically 
calculated μ(ϕ, λ) will be reconstructed with an error 
depending on the discretization step, and narrow 
distributions will be distorted stronger. 
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Figure 4 presents the results of a numerical 
experiment. The parameters of the model lognormal 
distributions rmod = 5, 15, 30 μm; the halfwidths are 
ν2 = 0.05, 0.1, 0.05, respectively. The range of radii 
r = 0.3–60 μm was divided into twenty intervals. For 
such a broad domain, this should be considered as a 
coarse division, especially if we take into account that 
the sonde distributions are narrow. Nevertheless, the 
inversion sufficiently well reproduces the main 
characteristics (the position of the mode and halfwidth) 
for all the three distributions including that for large 
droplets one. The total volume of particles was 
reconstructed accurate to 10–15%. The principle 
conclusion that is evident from Fig. 4 is as follows. The 
domain of the kernel K can be extended to  
∼–50–60 μm, even for the same parameters of the 

device. If the measurement error for μ(ϕ) does not 

exceed ∼–10–15%, the diagnostics of the largest 

particles (determination of the mode position and the 
distribution width) is possible with the only remark 
that we deal with nonspherical particles. The domain 
of the kernel and the measurement error are closely 
related, and the increase of the latter narrows the 
former. 

 
 

FIG. 4.  The results of numerical experiment on 
reconstruction of narrow particle size distribution.  
The index “a” refers to the initial V(r), “b” means 
the reconstructed ones.  Median radii are r = 5 (1),  
15 (2), and 30 μm (3). 
 

The appearance of a quasi-periodic set of false 
maxima in the reconstructed V(r) is an interesting 
lateral effect of reconstruction of narrow 
distributions by coarse kernel discretization.  Their 
amplitude is a few percent of the main maximum.  
The picture seems like a distortion of a rectangular 
shaped pulse with the loss of high-frequency spectral 
components (a coarse division is just the loss of high 
frequencies). 

Let us consider some specific features of the 
iteration method for inverting of optical information.  
Of course, one can think that the guaranteed 
positiveness of the solution (in contrast to the 
Turchin3 method) is an advantage of the method.  
However, it is necessary to note the following.  On 
the basis of Turovtseva’s method of statistical 
regularization, an inversion algorithm was realized.  
In this algorithm, the positiveness condition is 
imposed at the final stage of the solution of inverse 
problem.  This algorithm was used in Ref. 4.  In this 
operation, the narrow domain of weakly negative 
values of the reconstructed distribution function (a 
few percent of the maximum) was transformed into a 
dip (down to 30%) near the vertex of the 
distribution.  In other words, the false irregularity is 
a side effect of the condition of non-negativeness.  To 
weaken this effect, it is necessary to use a sufficiently 
strong regularization in the iterative method.6  The 
simplest way was to smooth the correcting factor, 
i.e., the correction of the reconstructed distribution. 

Let us remind the main idea of the algorithm.6  
The correction Q(r) to the distribution reconstructed 
is as follows: 
 

Q(ri) = ∑
j

 
μj Kij

μj*
 / ∑

j

 Kij , (4) 

 

where μ*
j = ∑

i

 N(ri)Kij is the optical information 

vector reconstructed using the distribution N(rj) 
obtained at the previous step.  It is the correction 
Q(r) that we smoothed using sliding average after 
each iteration.  At the same time an additional factor 
 

δ(ri) = 1 $ 
1

n
 ⎝
⎛

⎠
⎞m $ 2i

m
 

4

 (5) 

 

close to unity was added to the corrector (the factor 
is an element of a priori information).  Here m is the 
number of discretization points; n is the number of 
iterations.  This factor provides the check of a 
natural condition that the unknown distribution must 
rapidly decrease at the boundaries of the size range. 

According to the analysis, this regularization 
considerably smoothens the obtained solution and 
deteriorates the accuracy of reconstruction for μ only 
by 2–3%.  After already ∼–30 iterations the deviation 
of the correcting factor from unity does not exceed 
0.01; after 100 iterations, ∼–0.001.  Then, we 
restricted the number of iterations by n = 50–100. 

 

ANALYSIS OF THE MEASUREMENT RESULTS 
 

The angular behavior of brightness of the sun at 
the aureole angles was recorded both during the 
cloud experiment and some time after its end. Before 
September, 1994 we used the previous set of the 
scattering angles, then we added the angle ϕ = 1.5° 
to this set. To use ϕ = 1°, a modification of the 
device tracking system would be necessary.  It is 
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necessary for decreasing the residual error of tracking 
the sun at different optical thicknesses of clouds.  
Analyzing the inversion curves V(r), we’ll keep in 
mind two side effects of the inversion algorithm: the 
ripples and dips near the distribution maximum are 
often the effects of the solution’s positiveness, and 
the small false maxima following the main narrow 
peak of V(r) are effects of the coarse discretization. 

First of all, we have revised the previous 
measurement data including those presented in 
Ref. 1.  To invert the data obtained earlier, mainly 
during the preceding cloud experiment (1992), we 
applied the modified inversion algorithm and the 
kernels K extended to r  = 60 μm.  Some examples of 
the distribution densities of volumes V(r) with 
respect to particle size are presented in Fig. 5.  The 
curves 1 and 2 (Fig. 5a) correspond to the curve 1 in 
Fig. 3a and curve 3 in Fig. 3b,1 the curve 3 in 
Fig. 5a corresponds to curve 2 in Fig. 2.1  The 
comparison of the distributions V(r) obtained with a 
“short” and “extended” kernel demonstrates that the 
former displaces the distribution maximum to smaller 
radii r, and somewhat overestimates the 
concentration of particles with the radii at 6–10 μm 
in order to compensate for the displacement.  In all 
cases, the displacement is less than 30%, i.e., the 
distribution is not distorted too strongly on the 
whole.  As to the total volume of particles, the 
difference is two-fold (due to the appearance of 
larger particles in the distribution). 

 
FIG. 5. The results of inversion for data of 1992: 
a) one-layer cloudiness of Ci type (1, 2, 3); As 
cloudiness (4);  b) aircraft track. 
 

The results of inversion obtained for the 
scattering phase function of a very homogeneous and 

rather dense (τ ∼$ 0.7) As clouds (curve 4 in Fig. 5a) 
turned out to be rather unexpected (i.e., it was As 
where the scattering dominated).  The homogeneity 
of the cloudiness made it possible to use the complete 
set of the angles ϕj, and the reconstruction error 
turned out to be extremely small, about 5%.  It is 
normally accepted that the mode of the V(r) 
distribution in As is approximately in the range r ∼–
 10 μm, here, the distribution maximum falls within 
the range r ∼– 25–30 μm.  Let us note a very large 
number of submicron particles, however, this can be 
partly caused by the effects of multiple scattering. 

Figure 5b presents the inversion results for μ(ϕ, λ) 
belonging to a deteriorated and sufficiently 
homogeneous aircraft track. The track was carried at a 
small angle to its axis, so we could obtain two records 
at a temporal interval of 10 min, so the two curves in 
Fig. 5b also presents two stages of the track 
development to a certain extent. One can see three 
modes in the distribution. The modes are the powerful 
submicron, relatively weakly pronounced three-micron, 
and the mode of large particles at 20–25 μm. During 
the temporal interval ∼–10 min, the fine and medium 
size particles were as if transferred into large ones. 

Now let us return to the analysis of the results 
obtained during the complex cloud experiment in 
1994.  All in all, during June – September of 1994, 
nine episodes of translucent cloudiness were 
observed: four in June, two in July, and three in 
September.  Excluding the episode on September, 26, 
the cirruses were normally present: one-layer Ci, or 
together with As or Ac, or two layers of Ci (the 
situation with the double tropopause).  The 
cloudiness characteristics mostly changed rapidly 
(first of all, the optical thickness τ) so we had to use 
an incomplete set of scattering angles (first three or 
four angles ϕj).  For the number of discretization 
points n = 16 the problem is undefined, but the 
degree of arbitrariness is not high.  Several records 
were obtained in every episode.  To arrange more 
than twenty curves in the figures was not an easy 
task since close situations superimpose.  If the level 
of curves differs too much, the details of curves are 
lost, while the use of the double logarithmic scale 
leads to the loss of clearness. 

It is too early to speak about regularities based 
on only nine episodes, but one can at least plan the 
further study. Some generalizing conclusions may 
obviously be drawn based on the analysis of Figs. 5 
and 6. For the case of one-layer cirruses (see Fig. 5a, 
curves 2, 3; Fig. 6b, f), volume distributions V(r) are 
narrow and single-mode. The position of the mode 
varies in the range r = 20–40 μm.  The fraction of 
small particles (r ∼– 1–3 μm) is absent or only weak.  
In two-layer cloudiness of Ci+Ci type, the 
distributions with different parameters are observed 
in two layers, so the resulting distribution is either 
double-peaked (curves 1, 2, 3 in Fig. 6a) or wider 
due to coincidence of the peaks. If we have the case 
of the cloudiness of the Ci+As type, the result 
depends on the relation of the layer’s optical 
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thicknesses: if As dominates in the scattering, there 
are observed distributions similar to the curve 4 in 
Fig. 5a; if the contributions of As and Ci are close, 
we obtain an intermediate type (curves in Fig. 6e) 
with a plane distribution vertex and considerably 
larger halfwidth.  The episode of September 26, curve 
2 in Fig. 6c, is significant (as it is written in the 
caption, the lower cloudiness layer is identified as a 
dense one.  However, the halo ring was distinctly 

seen around the sun. This unambiguously indicates 
the presence of the upper Ci layer in which large ice 
crystals prisms) exist.  The maximum of the curve 2 
falls at r = 45 μm; it is not excluded that real r is 
larger and the effect is explained by small size rmax in 
the kernel K and specific features of the algorithm.  
The bell at r ∼– 30 μm resembles the curve 4 in 
Fig. 5a; in other words, the contributions of As and 
Ci for this episode are near the resolution limit. 

 

 a  
 b 

 c  
 d 

 e 
 

 f 
 

FIG. 6.  Results of inversion made using the data of 1994: a) June 22, Ci+Ci+Ac, time 16.20–17.20; b) June 
25, Ci, time 11.50–12.00; c) Ci+As cloudiness: July 12, time 15.00 (1); June 26, time 10.00; d) Ci+Ac, June, 
27, time 11.30–11.45;  e) Ci+As, July 17, time 12.30–12.50;  f) one-layer cloudiness: Ci, September 5, time 
16.25–17.35 (1, 2); Ac, September 26; time 9.30 (3). 
 

The presence of a rather powerful Ac layer under 
the Ci layer in the distribution V(r) generates the 

second bell in the size range r ∼– 1–3 μm, Fig. 6d.  It is 
worth drawing attention to a remarkable 
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reproducibility of the curves V(r): the third curve 
was recorded after a quarter of an hour after the 
first one. A very narrow fraction belonging to 
cirruses has the modal size r ∼– 25 μm. The modes 
are separated by a deep and wide dip.  Comparison 
with Fig. 6f enables one to assume that the 
situation presented in Fig. 6d is sufficiently 
characteristic. Both distribution fractions are 
presented in Fig. 6f in a pure form, i.e., separately 
(the curves refer to different episodes, September 5 
and 29). The curve 1 belongs to thin one-layer Ac 
clouds, and the curves 2 and 3 belong to thin one-
layer cirruses. So, the curves from Fig. 6d can be 
constructed using the curves from Fig. 6f. In other 
cases, the picture is not so distinct: the Ac bell is 
weak (curve 1 in Fig. 6a). 

The total volume of particles (i.e., the water or ice 
content) within the size range r = 0.3–60 μm varied 
approximately from 1 (for the thinnest Ci at τ ∼– 0.2) 
to 20 (at τ ∼– 1) cubic centimeters (for water, grams) 
per 1 m2. 

Thus, the determination of cloudiness types by 
the traditional classification (it was performed by 
employers of the Department of Geography, Moscow 
State University, during the experiments), with 
 

respect to the number of layers, layer type, well 
agrees with the characteristics of the particles’ 
volume distribution curves.  So one can expect that 
the sun aureole method is able to give sufficiently 
reliable information on the size distribution of cloud 
particles provided that the above stated remarks on 
Ci clouds are kept in mind. 
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