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Problems of organization and construction of mathematical models for 
climatic and ecological monitoring, forecasting, environmental quality control, 
and design of observations are discussed.  Interconnections of the models with 
experimental data, variations of the model parameters, and goal functions are 
realized based on the variational principle. 

 
1. INTRODUCTION 

 

Organization of modern climatic and ecological 
monitoring systems intended to study natural 
phenomena under anthropogenic effects is 
impossible without an active use of the methods for 
mathematical modeling and joint use of models of 
the examined phenomena and data of field 
experiments.  From a social viewpoint, the 
objective of these investigations is elucidation of 
premises for ecologically unfavorable and 
catastrophic situations in specific regions and 
numerical evaluation of permissible levels of 
anthropogenic loads based on criteria and 
limitations of ecological safety.  Naturally, the 
problem on the design of observations by the given 
criteria for their optimization or increase of their 
information content also arises.  Thus, a new class 
of problems occurs connected with the estimation of 
ecological prospects for specific regions under the 
joint effect of natural and anthropogenic factors.  
To solve this class of problems, we need complex 
mathematical models and adequate methods for 
their implementation together with the 
observational data for diagnostics, identification, 
and forecasting of environmental changes as well as 
for the refinement of methods to incorporate the 
feedback to control over the anthropogenic loads 
that affect the environmental quality into the 
economic and climatic regional system. 

For the approach considered here models of 
hydrothermodynamic processes in the climatic system 
of industrial regions taking into account 
anthropogenic effects, models of transport and 
transformation of pollutants, and models of 
interaction of air masses with underlying surface 
elements1–3 provide a basis for modeling technology. 

The implementation of mathematical models for 
monitoring and ecological forecasting includes their 
optimization.4 For this reason, basic models can be 
conveniently represented in variational form with the 
use of the integral identity that considers in the main 
functional the model description in the form of a 

system of differential equations, boundary and 
initial conditions, external impacts, and input 
parameters.  The functional of the integral identity 
is specified by the energy balance equation and 
other balance relations for examined processes.  By 
way of example, we describe here only a part of the 
model complex, namely, the model of transport and 
transformation of pollutants in the atmosphere; the 
variational model of the atmospheric 
hydrothermodynamics was described in Ref. 5. 

 
2. MODEL OF TRANSPORT AND 

TRANSFORMATION OF POLLUTANTS 

 

In accordance with purposes of our 
investigations, we use the dual description of the 
model in differential and variational forms. 

1) Basic model equations in the differential form 
can be written as follows: 

 
∂ci
∂t  + div ci u $ divs μ grads ci $ 
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2) Integral identity for model transport can be 
written as 
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Here ϕ ≡ c = {ci, i = 1, n } is the vector 

function with components specifying the values of 
the concentration of pollutants; n is the number of 

pollutants; ϕ* ≡ c* = {c*i , i = 1,n } is the vector 

function with arbitrary sufficiently smooth 

components; f = {fi, i = 1,n } is the source function; 

(Bc) is the operator of transformation of the 
pollutants; Λϕ is the operator of transport of the 
substance ϕ in the air flow having the velocity 
u = (u, v, w); μ and ν are the horizontal and vertical 
turbulent exchange coefficients, respectively; the 
subscript s denotes the operators on horizontal 
variables; Y = (μ, ν, u, c0, f) is the vector of the 
model input parameters; c0 defines the initial state; 

Dt = D×[0, t
$
], where [0, t

$
]  is the time interval; D is 

the domain of spatial variables x = (x, y, σ); σ is the 
vertical coordinate that keeps track of the Earth’s 
relief; x and y are horizontal coordinates; Ωt specifies 
the side boundary; St specifies the lower boundary of 
the domain Dt.  The coefficients of the velocity 
vector u are related by the continuity equation being 
a part of the atmospheric hydrothermodynamics 
model.  The rate of gravitational sedimentation of 
pollutants is also considered in the vertical 
component of the velocity w.  The form of the 
functional in identity (2) is defined by the energy 
balance equation of the model.  The integrals in 
Eq. (2) along Ωt and St and over the domain D at 
the moment t = 0 are closed with the use of the 
corresponding boundary and initial conditions 

a) ci(x, 0) = c0
i(x) at t = 0, 

b) R1i(c) = f1i(x, y, t) for σ = 1 (z = Zs(x, y)), 
c) R2i(c) = f2i(x, y, t) for σ = 1. 
On the side boundary Ω the concentration of 

pollutants is assumed to take its background value.  
Here, Zs(x, y) is the function that specifies the surface 
relief, R1i and R2i are the preset operators; f1i and f2i 
are sources and sinks of pollutants.  The operators 
R1i(c) describe the interaction of different substances 
with each other and with the Earth’s surface including 
exchange processes of the air with water, soil, 
vegetation, etc. and the operators R2i(c) describe the 
behavior of pollutants on the upper boundary.  Forms 
of the operators Bi(c), R1i and R2i(c) as well as of the 
functions f1i and f2i are specially assigned for each 
specific problem and therefore can be considered as 
generalized input parameters of the model.  Boundary 
and initial conditions for the function c*

i are the 
consequences of variational model formulation and of 
corresponding optimization problems. 

It is assumed that the functions ϕ and ϕ* belong 
to the corresponding functional space and the vector 
Y belongs to a set of permissible values of the 
parameters, i.e., 

 

ϕ ∈ Q(Dt) ,   ϕ* ∈ Q*(Dt) ,   Y ∈ R(Dt) . (3) 
 

3. CONTROL AND DESIGN FUNCTIONALS 
 

To formulate the problems of monitoring, 
forecasting, design and construction of the algorithms 
for solving these problems, we introduce a set of 
functionals of the form 

 

Φk(ϕ) = 
⌡⌠

 

 

Dt

 Fk(ϕ) χk(x, t) dD dt ,   k = 0, K  , (4) 

 

where Fk(ϕ) are prescribed functions of ϕ; χk(x, t) 
are the nonnegative weighting functions defined in 
Dt by the conditions or design of the experimental 
observations, conditions of estimation of the state 
either in the domain Dt or units subdomains or at 

discrete set of points Dm
t  ⊂ Dt containing at least one 

point; and, χk(x, t)dDdt are the corresponding Radon 
or Dirac measures in the domain Dt.  From this set 
of functionals, we select the functionals of four 
types that differ in their structure and purpose:   
1) functionals of general estimation of the system 
behavior; 2) quality functionals that characterize 
deviations of the measured and calculated parameters; 
3) restricting functionals of the state functions; 4) 
goal functionals for control of the anthropogenic 
loads. 

In this case, we consider restrictions that follow 
from the conditions of ecological safety and stability 
and the goal functionals consider in addition social 
and economic factors like the cost of environmental 
losses or the cost of salvaging our environment and 
reducing these losses. 

Restrictions on the state functions usually have 
the form of inequalities.  They may be global or local 
with respect to the domain of definition of the state 
function and independent variables.  Because 
numerical models have the large number of the 
internal degrees of freedom, local restrictions in the 
form of inequalities are inconvenient to consider in 
iterative optimization algorithms.  Therefore, we 
replace them by equivalent global limitations in the 
form of inequalities 

 

Φα(ϕ) = 0 ,    α ∈ {k = 0, K } . (5) 
 

The functions F  and  that define functionals (3) 
will be specially represented so that to eliminate 
violations of local restrictions with the help of 
inequalities (3). 

Let the local restrictions imposed on the state 
function ϕ be really specified in the form of 
inequalities 
 

Ψα(ϕ, x, t) ≤ 0 ,   ϕ ∈ Q(Dt) ,   (x, t) ∈ Dt , (6) 
 
where Ψ

α
 are the prescribed functions differentiable 

with respect to ϕ.  To write down integral 
restrictions (5) equivalent to local restrictions (6), it 
will suffice to take F

α
 in the definition of functional 

(4) in the form 
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Fα(ϕ) = ⏐Ψα + ⏐Ψα⏐⏐. (7) 
 
The observational functionals are defined as follows. 

Let us suppose that observations are carried out in 

a discrete set of points D
m
t  ⊂ Dt and denote by 

ηm = {ηm
k, k = 1,k0 } a set of the observable 

parameters and by H(ϕ) = {Hk(ϕ), k = 1,k0 } the 

corresponding models of observations, where k0 is the 
number of observations and Hk(ϕ) is the functional 
description of transformation of the state function into 
the observable parameters.  By [Hk(ϕ)]m we denote the 
calculated transformations of the observable parameters 

ηm at the points of the set Dm
t .  Taking into account 

the above designations, we define the discrepancy 
functionals for the measured and calculated values of 
the parameters in the form 

 

Φ(ϕ) = 

⌡⌠
 

 

Dt

 ∑
k

 

 

[(ηk
m

 $ [Hk(ϕ)])m
2 χk

m(x, t)] dD dt , (8) 

 

where χk
mdDdt are the Dirac measures concentrated at 

the points of the set Dm
t .  To acquire observational data 

and to carry out diagnostic investigations, we will take 
into account all observations in functionals (8).  To 
solve the problems of experimental design and 
diagnostic investigations, functionals for individual 
observations should be used in addition to the 
functional that considers all observations.  Positions of 
the observational points refer to a set of the input 
parameters of the data acquirement and experimental 
design model. 

 
4. PROBLEMS OF CONTROL OVER THE 

SOURCES 

 
Let us consider the formulation of problems of 

control over sources of pollutants.  In this case, the 
source functions in Eq. (1) are represented in the form 

 

fi(x, t) = ∑
k=1

Mi
 

 

(1 $ eki) qki(t) ωki(x) ,   i = 0, n  , (9) 

 
where qki are the functions specifying the power of the 
sources, ωki(x) is the function specifying their positions 
in the domain D, Mi is the number of sources of the ith 

pollutant, e = {eki, k = 1,Mi , i = 1,n } are the 

relative power adjustment coefficients of the sources.  
It is assumed that the adjustable parameters satisfy the 
following conditions: 
 

0 ≤ eki ≤ Eki ≤ 1 ,   k = 1, Mi  ,  i = 0, n  , (10) 

 

where Eki are the preset maximum values.  Here, 
eki = 0 corresponds to the initial state of the sources 

and Eki = 1 means that the corresponding source may 
be completely switched off in some situations. 

The design problem is to determine the permissible 
levels of anthropogenic loads by the given goal 
criterion on conditions that the state functions are 
related with the parameters and sources via 
mathematical model (1) in discrete form and satisfy the 
given set of restrictions.4  Its solution is reduced 
algorithmically to the estimation of the components of 
the parameter vector e for the optimum goal criterion 
with limitations.  The numerical model equations and 
the functionals of ecological and climatic restriction are 
used as these limitations. 

Because of nonlinearity of the models and 
functionals, the problem is solved by the gradient 
iterative methods.  Algorithms describing the sensitivity 
relations and algorithms for calculating the sensitivity 
functions themselves for each functional from the set of 
equations (4), (5), and (8) hold a central position 
here. 

Their definitions and calculation formulas have the 
forms 

1) for the sensitivity relations 
 

δΦi
h(ϕ) = (gradY Φi

h, δY) ≡  

 

≡  

∂
∂ξ I

h(ϕ, Y+  ξ δY, ϕ i
*)⏐ξ = 0 

,   i = 0, K  ; (11) 

 
2) for the sensitivity functions 
 

gradYΦi
h ≡ 

∂Φi
h(ϕ) 
∂Y  ≡  

 

≡ 
∂

∂δY 
∂
∂ξ I

h(ϕ, Y + ξ δY, ϕ i
*)⏐ξ = 0 

,   i = 0, K . (12) 

 
Here and below the superscript h denotes a 

discrete analog of the corresponding object; ξ is the real 
parameter; δ denotes variation of the corresponding 
object, for example, δY is the vector of variations of 

the parameter Y.  The conditions Y, Y + ξδY ∈ R
h(Dh

t), 

are assumed to be valid, where Dh
t is the grid in Dt.  In 

Eqs. (11) and (12), ϕ and ϕ*i(i = 0,K ) are solutions 

of the basic and conjugate problems for unperturbed 
values of the parameter Y.  These problems are 
formulated for discrete analogs of the functionals 

 

Φ
∼
i
h(ϕ, Y, ϕ i

*) ≡ Φi
h(ϕ) + Ih (ϕ, Y, ϕ i

*),  i = 0, K . (13) 

 

In Eq. (13), in contrast with Eq. (2), the function 
ϕ* acquires a more specific meaning; namely, here it 
plays the role of the Lagrangian distributed multiplier 
to consider the discrete equations of the numerical 
model as restrictions under examination of the ith 
functional given by Eq. (4) and therefore it is labeled 
by the subscript i in Eqs. (11) $ (13).  In this case, the 
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basic problem is formulated based on stationarity 
conditions for functionals (13) attendant to arbitrary 
and independent variations of the components of 

function ϕ*i  at the nodes of the grid D
h
t and the 

conjugate problems are formulated based on stationarity 
conditions for the same functionals attendant to 
variations of the components of the state function ϕ at 

the nodes of the grid D
h
t.  The number of conjugate 

problems to be solved is equal to the number of 
functionals in Eq. (4).  The functions ∂Φi/∂ϕ are 
selected as sources for the conjugate problems.  From 
here a demand arose for differentiability of functionals 
(4), (5), and (8) with respect to the state functions.  
Various applications of the conjugate problems for 
investigation of environmental systems were discussed 
in Refs. 1, 2, 4, and 6. 

Solutions to the basic problem and conjugate 
problems allow us to eliminate the internal degrees of 
freedom of the numerical model itself from sensitivity 
relations (11) and thereby to relate directly the 
variations of the functionals with the variations of the 
parameters with the help of the sensitivity functions.  
Analysis of the sensitivity functions allows us to reveal 
the regions with the enhanced sensitivity of the 
examined functionals to the parameter variations.  As 
already noted, the functions of the pollutant sources 
refer to the generalized model parameters.  Thus, the 
sensitivity functions for the parameter variations δf 
yield the information required for regionalization of the 
territory D by the degree of sensitivity of the 
prescribed functionals to variations of sources of 
anthropogenic impacts and for incorporation of 
feedback to control over the sources. 

When the functions qki(t) and ωki(x) in 
representation (9) are fixed and only adjustable 
parameters e are varied, the sensitivity relations 
provide the way for determining the values of these 
parameters on the basis of the iterative gradient 
algorithm.  In each iteration step, corrections for these 
parameters are calculated from the values of the 
sensitivity functions of the goal functional to be 
optimized and the restrictions are taken into account by 
the method of projecting the gradient of the goal 
functional in the direction of the desired parameter 
vector onto a linear manifold created by the sensitivity 
relations for restriction functionals (5)$(7). 

The projection operator is formed with the help of 
the matrix of this manifold.  Its elements consist of the 
values of the sensitivity functions attendant to 
variations of the desired parameters. 

The source parameters so obtained provide 
numerical estimates of the permissible levels of the 
anthropogenic loads that keep the state of the climatic 
system within ecological safety standards.  If the 
functions of geographical position of the sources ωki(x)  
entering into Eq. (9) also should be refined, the 
sensitivity functions attendant to variations δωki(x) 
also should be used to estimate the source parameters. 

For convenience of presentation, we consider 
here the algorithmically open version of the model 
pollutant transport with respect to the 
hydrothermodynamic models assuming that the 
atmospheric state is known and is described by the 
velocity field u and the turbulent exchange 
coefficients μ and ν that form the set of the input 
model parameters.  Under real conditions, the model 
should be considered in combination and should take 
into account direct and inverse relations between the 
hydrothermodynamic processes and the atmospheric 
pollution because the atmospheric behavior and 
conditions of formation of mesoclimates determine in 
many respects the permissible levels of anthropogenic 
loads.2,7  In essence, the problem is to find the 
conditions of climatic and ecological stability given 
that natural and anthropogenic factors interact.  
Therefore, it is very important to examine the degree 
of sensitivity of the goal functionals and restricting 
functionals to the entire set of the input parameters 
and external impacts in an analysis of the results of 
modeling. 

 

5. DATA ACQUIREMENT AND EXPERIMENTAL 

DESIGN 
 

Problems on acquirement of observational data, 
model diagnostics, and experimental design are solved 
with the joint use of the models and observational 
data.8  To implement the algorithm for establishing the 
direct and inverse relations between observations and 
models, we should suggest that at least one element of 
the modeling procedure, that is, either the model itself, 
or its parameters, or initial and input data contain 
errors.  Errors also can be present in the observational 
data. 

To construct algorithms for solving the problems 
of data acquirement and model diagnostics, we define 
the quality functional 
 

Jh(ϕ, r, Y, ϕ0) = Ih(ϕ, Y, ϕ*) + {Φ0(ϕ) + (rT M0 r) +  
 

+ (ϕ0
 $ ϕ

0
a)

T M1(ϕ0 $ ϕ0
a) + (Y $ Ya) Γ(Y $ Ya)}h . (14) 

 

Here Φ0(ϕ) is the observational functional; r is the 
error function of the model; ϕ0

a and Ya are a priori 
estimates of the initial state ϕ0 and of the parameters 
Y; M0, M1, and Γ are the prescribed weighting 
matrices; the superscript T denotes transposition. 

The algorithms are constructed based on the 
condition of stationarity of functional (14) with respect 
to variations of the components of functions ϕ*, ϕ, r, 

Y, and ϕ0 at the nodes of the grid D
h
t.  They 

incorporate procedures for solving the basic problem 
and the conjugate problems and formulas for 
calculating functions r, ϕ0, and Y in terms of the 
corresponding sensitivity functions.  These algorithms 
are based on the gradient iterative methods. 
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Now we consider experimental design that is 
primary determined by the purposes and chosen 
criteria for estimating the information content of the 
observations.  Therefore, there are many practical 
approaches to a solution of this problem.9 Taking into 
account distinguishing features of climatic and 
ecological monitoring and the large number of 
internal and external degrees of freedom for models 
of examined processes, it is convenient to use the 
experimental design procedure based on the 
sensitivity functions separating out the regions in 
which these functions attain their maxima and to 
place observation points in these regions.  This 
procedure is efficient when observations are aimed at 
estimating the functionals or the model parameters.  
Position of the observation points is the input 
parameter of the design problems.  By virtue of 
nonlinearity of the models, we will use the tactics of 
sequential design correcting the distribution of 
observers taking into account the sensitivity function 
of functionals to be estimated to variations of the 
desired model parameters including the position of 
the observers. 

In this case, the motion of the observation points 
in the domain Dt may be parameterized in the form 

 

xkτ = xk + τV(xk),  xkτ , xk ∈ Dt , (15) 
 

where xk and xkτ describe the position of the starting and 
designed points of observations, V(xk) is the velocity in 
the design space, and τ is the parameter.  The function 
V(xk) is calculated in terms of the sensitivity functions of 
the goal functional to the variations of the position of 
observational points and the parameter τ is estimated 
from the condition of optimizing the goal functional. 

 

6. CONCLUSION 
 

The algorithms for optimizing the problems of 
monitoring and experimental design can be used to  
 

calculate various sensitivity functions and to incorporate 
the feedback for control of the anthropogenic factors and 
position of the observational points.  This is the principal 
difference of the procedure for modeling of the problems 
of monitoring of the ecology of stable development from 
the convenient methods of direct modeling.  With such 
design techniques, the researcher ceases to be simply the 
observer and the recorder of environmental changes and 
has a good chance to seek ways to preserve climatic and 
ecological stability in the design and realization of 
economic activity.  The work was supported in part by 
the Russian Foundation for Basic Researches (project 
No. 94$05$16105). 
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