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The shear interferometer is analyzed using records of a hologram of a 
focused image of an amplitude screen.  It is demonstrated that spatial 
filtration of a diffraction field leads to formation of an interferogram bearing 
information about spherical aberrations of a lens with a doubled sensitivity. 

 
As was shown in Refs. 1 and 2 shear 

interferograms are being formed in the bands of 
infinite width in the case of double exposure 
recording of a hologram of a focused image of a matt 
glass screen based on superposition of subjective 
speckle fields of two exposures in the plane of the 
hologram.  Moreover, the interference pattern 
characterizing wave aberrations of a lens or an 
objective under control at the recording stage and the 
interference pattern characterizing aberrations of the 
optical systems in the channels of coherent radiation 
wave front for illuminating a matted glass screen and 
formation of an off-axis reference wave are localized 
in different planes.  This makes it possible to obtain 
independent information about wave aberrations of 
an object under control by spatial filtration of the 
diffraction field at the stage of hologram 
reconstruction in its plane. 

In this paper, we analyze specific features of 
shear interferogram formation at a double exposure 
recording of the Gabor hologram of a focused image 
of an amplitude screen in diffusely scattered fields. 

According to Fig. 1a the amplitude screen 1 
lying in the plane (x1, y1) is illuminated with a 
coherent radiation having a converging quasi-
spherical wave front with a radius of curvature R ≤ l1 
where l1 is the distance between the screen and the 
principal plane (x2, y2) of the lens L1.  By this lens, 
the real image of the screen is built in the plane of a 
photographic plate 2.  The Gabor hologram is 
recorded during the first exposure. Prior to second 
exposure, the amplitude screen and the plate are 
displaced.  For instance, the screen is displaced along 
the x axis by a value a, and the plate is displaced 
opposite by the distance b = a/μ1 where μ1 = l1/l2 is 
the scale transformation factor, l2 is the distance 
from the principal plane of the lens L1 to the plate. 

After the photographic processing, the coherent 
plane wave from a light source used at the stage of 
recording comes to the recorded double exposure 
Gabor hologram and an interference pattern is 
detected in the Fourier plane 3 (Fig. 1b). 

 

 
 

 a  b 
FIG. 1. Optical arrangement for recording (à) and 
reconstruction (b) of a double exposure hologram of 
a focused image of an amplitude screen: 1 is the 
amplitude screen, 2 is the photographic plate 
hologram, 3 is the plane of detecting the 
interference pattern, L1, L2 are lenses, P1 is the 
aperture diaphragm; P2 is the spatial filter. 

 

Based on discussion from Ref. 3, the distribution 
of the complex amplitude of the field in the first 
exposure takes the form 
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× dx1 dy1 is the Fourier transform of the input function  
[1 – t(x1, y1)] exp i ϕ0(x1, y1), 1 – t(x1, y1) is the screen 
transmission amplitude which is a random function of 
coordinates, ϕ0(x1, y1) is a determined function 
characterizing phase distortions of the radiation wave 

front irradiating the amplitude screen. The distortions are 
caused by aberrations of the optical system forming the 

wave front. 
As follows from Eq. (1), the phase distribution of 

a diverging spherical wave with a radius of curvature R 
is superposed on the distribution of the field as a 
Fourier transform of the input function in the plane 
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(ξ, η). According to Ref. 4, one can assume that the 
complex amplitude distribution of a real screen image 
in the plane (x3, y3) is a result of one more Fourier 
transformation performed with the lens L1. Actually, 

since 
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f1 is the focal length of the lens L1, we have 
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× dx2dy2 is the Fourier transform of the distribution 
p1(x2, y2) expiϕ1(x2, y2) describing the pupil of the 
lens L1 (Ref. 5). By this distribution, we take into 
account axial wave aberrations of the lens. 

By two sequential Fourier transformations, we 

obtain 
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The width of the function P1(x3, y3) is of λl2/d 
(Ref. 6) where λ is the wavelength of light used for 
recording and reconstruction of the hologram, d is the 
pupil diameter of the lens L1. So we can assume that 
the change of the phase of the spherical wave with a 
radius of curvature Rl2/(l1 – R)μ1 does not exceed π 
within its domain.  Then, let us remove the quadratic 

phase factor exp[–ik(x
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the integral sign of the convolution with the function 
P1(x3, y3) in Eq. (3) for the region with the diameter 
 ≤ dR/(l1 – R)μ1 in the plane (x3, y3) we obtain 
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It follows from Eq. (4) that, by because of 
spatially limited scattered field, by the aperture of 
the lens L1, every point of the amplitude screen 
image is broadened up to the dimensions of a 
subjective speckle defined by the width of the 
function P1(x3, y3) which is the result of diffraction 
of a plane wave on the pupil of the lens L1. Besides, 
the distribution of phase distortions of the wave 
irradiating the screen is superposed on the subjective 
speckle field under the assumption that the period of 
the function ϕ0(–μ1x3, –μ1y3) exceeds the dimension 
of the subjective speckle. The phase distributions of 

the converging spherical wave for R < l
2

1/(l1 + l2), 

and diverging spherical wave for l
2

1/(l1 + l2) < R ≤ l1 
are also superposed on it, and the quadratic phase 

factor is absent in Eq. (4) for R = l
2

1 /(l1 + l2). 
Let us write the expression for the complex 

amplitude of the field in the plane of the 
photographic plate before the second exposure: 
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Let the photosensitive layer exposed to the light 

with the intensity I(x3, y3) = u1(x3, y3)u*
1(x3, y3) + 

+ u2(x3, y3)u*
2(x3, y3) be processed within the linear 

portion of its characteristic curve of blackening. Then, 
taking into account the condition t(x1, y1) << 1 
(Ref. 7) the transmission τ(x3, y3) of the photographic 
plate in Fig. 1b for the diffusely scattered component 
of light is defined by the expression 
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To reconstruct the double exposure Gabor 
hologram, according to Fig. 1b, the distribution of 
the field amplitude in the back focal plane of the 
lens L2 with the focal length f2 can be represented in 
the form8 
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× dx3dy3 is the Fourier transform of the transmission 
function of an opaque screen with a circular 
aperture.9 

By substituting Eq. (6) into Eq. (7), we obtain 
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× dx3 dy3 is the Fourier transform of the absorption 
function of the amplitude screen in the plane of its 
image; F1, F2, F3, F4 are Fourier transforms of the 
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Since the domains of the functions F1, F2, F3, F4 
are small, one can put F1 = F2 = F3 = F4 = δ(x4, y4) 
where δ(x4, y4) is the Dirac delta function.  Then the 
expression (8) takes the form 
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within the overlap area of the pupil functions where 
the subjective speckles of two exposures coincide. 

If the dimension of the subjective speckle 
defined by the width of the function P2(x4, y4) in the 
observation is less than the period of the phase 
function modulating the speckle field and standing 
between the brackets in Eq. (9) at least by an order 
of magnitude,10 one can remove the function out from 
the convolution integral.  In view of the evens of the 
function ϕ1(x2, y2), the superposition of the 
correlating speckle fields of the two exposures leads 
to the following illumination distribution 
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As follows from Eq. (10), the subjective speckle 
structure is modulated by interference fringes in the 
observation plane (see Fig. 1b).  The interference 
pattern characterizes the spherical aberration of the 
lens L1 (see Fig. 1a).  Its shape is a result of 
combination of two types of interference patterns, 
namely, the interference pattern as a shear 
interferogram in bands of infinite width and 
interference pattern in bands of equal thickness.  
Besides, the interference pattern in bands of equal 
thickness is also formed at a single exposure of a 
photographic plate (as it follows from Eq. (9)) and has 
double sensitivity of the interferometer to the spherical 
aberration of the lens L1. As to the sensitivity of the 
shear interferometer, it is determined by the 
displacement b and the geometrical factor 
G = μ1(l1 – R)/R. For l1 = R, the sensitivity equals 
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bμ1(l1

 

– R)

R l2
 

between the speckle fields of two exposures in the 
plane of the photographic plate is zero, as it follows 
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from Eqs. (4) and (5). With the decrease in the value 
R as compared with l1, the sensitivity of the 
interferometer increases due to the geometrical factor 

for a fixed value of b.  When R = l
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sensitivity of the interferometer is determined only by 
the value of the lateral displacement b. 

Let the regular transmission component of the 
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focusing on the plane (ξ, η) (see Fig. 1à) at the 
hologram of a focused image.  Then one should use the 
general expressions for complex field amplitudes 
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in spatial filtration of the diffraction field off the 
hologram plane (Fig. 2) at the stage of its 
reconstruction for determining the transmission of the 
double exposure hologram. 

 
FIG. 2. Scheme of detection of the interference 
pattern in filtration in the near zone of diffraction 
 

Based on the assumptions that the period of 
the function ϕ0(–μ1x3, – μ1y3) exceeds the 
dimension of the subjective speckle in the plane of 
the photographic plate, t(x1, y1) <  < 1, and the 
negative is processed within the linear portion of 
its characteristic curve, we write the transmission 
amplitude τ′(x3, y3) of the double exposure  
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Gabor hologram in Fig. 2 in the form omitting the 
regular transmission component of light because it 
determines the illumination distributions in the 
observation plane only in a small spot. 

Then the complex amplitude distribution of a 
diffusely scattered component of the field in the back 

focal plane of the lens L2 (Fig. 2) is defined by the 

expression for the maximal value of the correlation 

functions. 

u′(x4,y4)~

⎩
⎨
⎧
 

 

⎩
⎨
⎧

⎭
⎬
⎫

exp ⎣
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⎦
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2

4 + y
2

4)  p1(μ2x4, μ2y4)exp iϕ0(–μ2x4,–μ2y4) ⊗ 

 



V.G. Gusev Vol. 10,  No. 2 /February  1997/ Atmos. Oceanic Opt.  
 

 

93
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With regard to the fact that exp ⎣
⎡

⎦
⎤–ikRμ2

 

2μ1(l1–R)f2
 (x

2

4 + y
2

4)  ⊗ exp ⎣
⎡

⎦
⎤ikRμ2

 

2μ1(l1–R)f2
 (x

2
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2
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(Ref. 11), the expression (14) takes the form 
 

u′(x4, y4) ~ 
⎩
⎨
⎧

⎭
⎬
⎫

1 + exp–i ⎣
⎡

⎦
⎤∂ϕ1(μ2

 

x4, μ2 y4)

∂μ2 x4
 
2bμ1(l1

 

–R)

R F(x4, y4)⊗P2(x4, y4). (15) 

 
By virtue of the above–stated assumption that the 

dimension of the subjective speckle in the observation 
plane (x4, y4) (see Fig. 2) is small as compared with 
the period of the phase function modulating the speckle 
field, the superposition of correlating speckle fields of 
two exposures leads to the following illumination 
distribution 

I′(x4, y4) ~ ⎣
⎡

⎦
⎤

1 + cos 
∂ϕ1(μ2

 

x4, μ2 y4)

∂μ2 x4
 
2bμ1(l1

 

–R)

R  × 

× ⏐F(x4, y4)⊗P2(x4, y4)⏐
2
.  (16) 

As follows from expression (16), the subjective 
speckle structure is modulated by interference fringes.  
The interference pattern has the shape of a shear 
interferogram in the bands of infinite width.  
Moreover, the sensitivity of the interferometer for fixed 
values if the geometrical factor and lateral 
displacement is twice as large. 

In the experiment, double exposure Gabor 
holograms of the focused image of the amplitude screen 
were recorded on Mikrat YRL plates using a He-Ne-
laser operating at the wavelength of 0.63 μm. 

As an example, Fig. 3a presents an interference 
pattern in bands of equal thickness.  It characterizes 
spherical aberration of a lens with the focal length 
f1 = 160 mm, pupil diameter d = 27 mm. The recording 
of the hologram was performed using the lens for a unit 
magnification with R = l1 in the plane of the paraxial 
image of the amplitude screen with a single exposure.  

To provide vignetting of the spatial wave spectrum, the 
diameter of the illuminated part of the amplitude 
screen was 35 mm. The detection of the interference 
pattern with an objective having focal length 
f2 = 80 mm (see Fig. 1b) did not require spatial 
filtration of the diffraction field in the hologram plane. 
This is explained by the fact that the conditions of 
spatial invariance of the pulse response of the lens L1 
(Ref. 12) are satisfied on all its aperture for the 
considered case of formation of the interference pattern 
in the bands of equal thickness in diffusely scattered 
fields. The spatial invariance of the pulse response of 
the lens for the Gabor hologram of a focused image of 
the amplitude screen manifests itself by the fact that 
quasiplane waves of (–1) and (+1) diffraction orders 
coincide in directions irregardless of whether the 
hologram is reconstructed at the point of the optical 
axis or out of it. When the value R decreases as 
compared with l1, the condition of full isoplanatism 
of the optical system of image formation is violated 
and there appears an angle between diffracting 
waves of (–1) and (+1) diffraction orders. The 
angle increases when the radius of curvature of the 
wave front of coherent radiation illuminating the 
amplitude screen deviates from the distance 
between it and the principal plane of the lens 
controlled.  In these cases, spatial filtration of the 
diffraction field in the hologram plane on the 
optical axis in Fig. 1b is required in order to detect 
the interference pattern in Fig. 3a. 
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 a  b 
 

FIG. 3. Interference patterns in the bands of equal 
thickness characterizing: à – spherical aberration of 
the lens controlled; b – spherical aberration and 
defocusing. 

 

As with the classical Twyman–Green 
interferometer,13 the interference pattern in the bands 
of equal thickness in Fig. 3à characterizes the double 
sensitivity of the interferometer to the spherical 
aberration of the lens.  However, although the 
increase of sensitivity in the Twyman–Green 
interferometer occurs as a result of two-fold passage 
of a wave through an object controlled in the 
measurement channel, the mechanism of formation of 
an interference pattern in the bands of equal 
thickness is quite different in the considered case. As 
follows from Eq. (9), the fronts of quasiplane waves 
in (–1) and (+1) diffraction orders are faced each 
other and one of the fronts is inverted around the 
optical axis with respect to the other. 

In the case of a single exposure recording of the 
Gabor hologram of a focused image of the amplitude 
screen when the photographic plate is displaced from 
the paraxial image plane by 1.15 mm, there is formed 
an interference pattern in the bands of equal 
thickness (Fig. 3b) characterizing the spherical 
aberration and defocusing of the lens L1. Moreover, 
the spatial invariance of its pulse response is violated 
on all its aperture and, in order to detect the 
interference pattern, spatial filtration of the diffraction 
field in the hologram plane on the optical axis (see 
Fig. 1b) is required. A high–contrast interference 
pattern in Fig. 3b was observed for the filtering 
diaphragm diameter p2 which does not exceed 6 mm. 

Figure 4à presents the result of reconstruction of a 
double exposure Gabor hologram of a paraxial 
amplitude screen image focused by a lens controlled 

with unit magnification at the point x′3 = 6 mm, y′3 = 0 
by a small-aperture (≈2 mm) laser beam. The hologram 
was recorded at R = l1/2. Before the second exposure, 
the amplitude screen was displaced along the x axis by 
the value à = (2.2 ± 0.002) mm, and the photographic 
plate was displaced along the opposite direction by the 
value b = (2.2 ± 0.002) mm.  Diffracting waves form 
shear interferograms in the bands of infinite width 
both in (–1) and (+1) diffraction orders.  They 
characterize wave aberrations of the lens controlled, 
L1, (see Fig. 1à) due to double exposure of the plate.  
Besides, in a small range of overlap of the wave 
fronts the superposition of waves in (–1) and (+1) 
diffraction orders leads to formation of an 
interference pattern caused by facing of the pair of 

the wave fronts and the turn around the optical axis 
by 180° with respect to the other pair (taking into 
account that there is an angle γ = x'

3/l (l = l1 = l2) 
between the waves in (–1) and (+1) diffraction 
orders.  The interference pattern presented in Fig. 4b 
and described by the expression (10) is formed in the 
observation plane (see Fig. 1b) in reconstruction of the 
hologram by a small-aperture laser beam at a point of 
the optical axis when γ = 0 and the waves in (–1) and 
(+1) diffraction orders coincide in direction. 

 

 
 a  b 
FIG. 4. Interference patterns detected in spatial 
filtration of the diffraction field in the hologram 
plane: à – off the optical axis; b – on the optical 
axis. 

 

If the double exposure hologram considered of 
the focused image of the amplitude screen is then 
reconstructed according to Fig. 2, a shear 
interferogram in the bands of infinite width is formed 
in the observation plane (x4, y4) in spatial filtration 
of the diffraction field on the optical axis off the 
hologram plane (the diameter of the filtering aperture 
diaphragm p2 of the lens L2 was ≈2 mm).  The 
interferogram is described by Eq. (16) and presented 
in Fig. 5 to a larger scale as compared with Fig. 4.  
As to Fig. 4b, the shear interferogram characterizes 
spherical aberration in the paraxial focus of the lens 
controlled but, in contrast to Fig. 4b, the sensitivity 
of the interferometer is twice as large for a fixed 
value of the lateral displacement b.  The lens L2 
performs the Fourier transform of the field 
diffracting on the hologram both in Fig. 1b and 
Fig. 2.  However, in the first case the interference 
pattern is formed on the optical axis as a result of 
spatial filtration of the field in its plane; the pattern 
corresponds to a small region of spatial frequencies of 
the amplitude screen bounded by the aperture of the 
controlled lens L1.  Moreover, the directions of 
corresponding spatial frequencies are close to the 
direction of the optical axis.  In the second case, the 
whole range of spatial frequencies of the hologram of 
the focused amplitude screen image is detected, and 
filtration on the optical axis is necessary to record 
the spectra in (–1) and (+1) diffraction orders. 
Information about aberrations of the lens L1 
controlled is contained, as in Ref. 14, not only in the 
objective wave (diffusely scattered light component) 
but also in the reference wave (regular light 
transmission component completely overlapping with 
the pupil of the lens L1).  Since the high-frequency 
holographic interference fringes bear this information 
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within the whole hologram, this causes double 
sensitivity of the shear interferometer. 

 

 
 

FIG. 5. Shear interferogram detected in the 
Fourier plane with spatial filtration of the 
diffraction field on the optical axis beyond the 
hologram plane. 

 
To obtain non-zero sensitivity of the shear 

interferometer in the case of double exposure 
recording of the Gabor hologram of a focused image 
of an amplitude screen at R = l1, one can use the 
well-known2 particular method of superposing 
subjective speckle fields of two exposures in the 
plane of the photographic plate.  In this case, before 
the second exposure, the amplitude screen is 
displaced, for instance, along the x axis by the value 
à, and the lens L1 controlled is displaced by the shift 
b = af1/l1 along the same direction in its principal 
plane.  One can demonstrate that the illumination 
distribution in the Fourier plane takes the form 

I(x4, y4) ~ {1+ cos2ϕ1(μ2 x4, μ2 y4)} × 

× 
⎩
⎨
⎧

⎭
⎬
⎫

1 + cos ⎣
⎡

⎦
⎤∂ϕ1(μ2 x4, μ2 y4)

∂μ2 x4
 b  × 

× ⏐F(x4, y4)⊗P2(x4, y4)⏐
2
.  (17) 

 

at the reconstruction state for the double exposure 
Gabor hologram of a focused image of the amplitude 
screen. 

Figure 6 presents the interference pattern 
described by expression (17) and characterizing the 
spherical aberration of the lens L1 controlled in the 
paraxial focus for the displacement 
b = (2.4 ± 0.002) mm.  To detect it, spatial filtration 
of the diffraction field is not required. 

 

 
 

FIG. 6. Interference pattern corresponding to the 
double exposure recording of the hologram in the 
case of displacement of the screen and the lens 
before the second exposure. 

It should be noted that the frequency of 
interference fringes grows with the decrease of focal 
length of the lens controlled and increase in defocusing 
(see Fig. 3b).  If the period of interference fringes 
becomes comparable with the dimension of the 
subjective speckle, the visibility of the interference 
pattern in the bands of equal thickness is zero.  Then 
one can exclude the first factor in Eqs. (10) and (17) 
and the double exposure recording of the Gabor 
hologram of a focused image of an amplitude screen 
leads to formation of low-frequency interference 
pattern of lateral displacement in spatial filtration of 
the diffraction field in the hologram plane at the stage 
of its reconstruction. 

Thus, this study demonstrates that the double 
exposure recording of the Gabor hologram of a focused 
amplitude screen image provides for formation of the 
interference pattern insensitive to the off-axis wave 
aberration of the lens controlled as compared with the 
double exposure recording of the hologram of the 
focused image of a matt glass screen.1,2 It can be 
explained by interference of counter waves whose 
fronts are turned by 180° to each other. Besides, the 
recording of the hologram in the plane of the paraxial 
image of the amplitude screen leads to formation of an 
interference pattern in the bands of equal thickness in 
diffusely scattered fields.  The pattern characterizes the 
spherical aberration of the lens controlled with double 
sensitivity.  Moreover, the sensitivity of the shear 
interferometer also increases twice for a fixed value of 
displacement in double exposure recording of the 
hologram under the condition that the pupil of the lens 
under control overlaps with the regular component of 
light transmission of the screen. 
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