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The structure and the threshold amplification of collective modes of the 
diffraction–coupled laser array are theoretically investigated. The dependence of 
threshold gain on the order of diffraction coupling (i.e., on the number of coupled 
lasers) is analyzed within the framework of the perturbation theory. Functions are 
found describing the response of the phase of the output radiation on the misalignment 
of optical lengths of individual lasers in the laser array. 

 
Promising technique for obtaining the powerful laser 

radiation of high quality, which is of interest for various 
problems in laser technology, is the use of module multibeam 
laser systems. Frequency and phase synchronization of modules 
via optical coupling of different lasers makes it possible to sum 
over the coherent fields of individual lasers, so that much 
higher power density can be obtained in the far zone of 
diffraction (I ∼ N2, where N is the number of lasers in array). 
The efficiency of various means for such coupling and the 
problems of stability of coherent regime of generation by the 
laser array were theoretically analyzed in Refs. 1–3.  Optical 
coupling can be realized in the simplest way for large laser 
arrays accounted for the diffractional exchange of radiation 
between the active elements placed inside the common cavity 
(Fig. 1). For example, phased generation by large number of 
waveguide CO2 lasers (about 60), placed in a two–
dimensional array with cross section forming a periodic 
triangular grid, was obtained in Ref. 4. Synchronization of 
both the two– and one–dimensional arrays of gas and 
semiconductor lasers was obtained in Refs. 3, 5, and 6 on the 
basis of self-reproduction of periodic fields (the Talbot effect). 

 

 
 

FIG. 1. Diffraction-coupled laser array. M it the coupling 
minor. 
 

Both theoretical7 and experimental8,9 studies pointed 
out the strong influence of the spread in the parameters of 
individual lasers (for example, their optical lengths) on the 
efficiency of phase synchronization. Therefore, it becomes 
quite important to compensate for such distortions as well 
as to actively control the phase profile of output radiation 
of the laser array. 

In the present paper we theoretically investigate the 
effect of misalignment of the optical lengths of the 
diffraction coupled lasers on the structure and threshold 
amplification of the proper field distribution (of its 
collective modes). Response functions are found for the 
phase of the output radiation. 

To analyze this problem, we employ the model of 
periodic array of the diffraction coupled lasers (Fig. 1). The 
individual active elements are optically coupled due to 
diffraction spreading of radiation reflected from the 
coupling mirror M. 

To retrieve the collective modes in the array let us 
consider the transformation of the field after the radiation 
has passed around the cavity. The field in the plane z = 0 
has the form: 

 

E (x, y, z = 0) = 1 2( ; ),nm

n m
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where f(x, y) is the distribution of the given transverse 
mode of an individual waveguide and enm is the complex 
field amplitude in the waveguide (n, m). Transformation of 
the field after the radiation passed round the cavity may be 
represented in the operator form: 
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where 
∧
G is the linear diffraction operator describing the 

propagation of radiation to the coupling mirror M and back to 

the plane of the exit aperture of waveguides, 
∧
P is the operator 

of projection upon the given transverse mode of the 

waveguide, and 
∧
T is the operator of radiation propagation 

along the waveguides. 
Equating Eqs. (1) and (2) (in accordance with the 

conduction of complete field reproduction after the radiation 
has passed around the cavity) we obtain an eigenvalue 
problem: 
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where M
nm

kl
  is the complex coefficient of diffractional coupling 

of the waveguides (k, l) and (n, m), γ is the eigenvalue whose 
modulus and phase prescribe the Q–factor and frequency of 
the corresponding collective mode. Under condition that f(x, 
y) = f

1
(x) f

2
(y), problem (3) is factorized for a square array 

and is reduced to the problem of collective modes in a linear 
array: 
 

γ(k) E(k) = M
∧

 E(k), (5) 
 

where M
∧

 is the matrix of coefficients of diffraction coupling 
and E(k) is the complex envelope of the kth collective mode. 

Solution (5),   which   corresponds   to   the   complete 

reproduction of periodic fields at a distance 
2
12

T

a
z =

λ
 is well 

known for the infinite laser array. In that case two modes 
appear to separate out in accordance with their Q–factor 
(⎜γ⎜ = 1): the cophased (en = const) and the antiphased 
(en = (–1)n const) ones (see Ref. 1). 
 

 
 

 
 

FIG. 2. Threshold gains for collective modes G
(k)

th
 vs. distance z to the coupling mirror (κ is the number of a mode): 

a) a/σ = 6 and N = 5; b) a/σ = 4 and N = 5 (solid curve) and N = 100 (dashed curve). 
 

The general solution of problem (5) has not yet been 
found for a large but finite array of lasers. However, taking 
into account that ⎜M1⎜ . ⎜M2⎜ . ⎜M3⎜ ..., we may restrict 
ourselves to considering only the optical coupling of the 

"closest neighbours". In this approximation the matrix M
∧

  of 
diffraction coupling is tridiagonal and the solution of problem 
(5) acquires the form 
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where k is the number of the collective mode. Note that 
k = 1 corresponds to the cophased mode and k = N – to the 
antiphased mode. 

For n ∼ 1 and n ∼ N the field amplitudes in the 
waveguides decrease due to uncompensated diffraction losses 
of radiation at the edges of the array. The dependence of 

threshold gains G
(k)

th
 = –ln ⎜γ

(k)
⎜ on the distance to the 

coupling mirror z is shown in Fig. 2 for 
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The threshold gain of the antiphased mode (k = N) 
reaches minimum at z = zT/4, since the self-reproduction 
results in such a distribution of the corresponding field 
after its reflection from the mirror, which coincides with 
the initial distribution in the plane of the waveguides 
output aperture at a distance of zT/2. As for the cophased 
mode (k = 1), the distribution of the reflected field in the 
plane of the output aperture is shifted at half the period 
of the laser array relative to the initial distribution at z = 
zT/4, and the threshold gain appears to be maximum 
then. 

At z = zT/2 the threshold gains of cophased and 
antiphased modes coincide with each other since the field 
distributions in the plane of the waveguides output aperture 
are reproduced after reflection for both modes. 

An increase of threshold gains with a/a is explained 
by wider divergence of radiation which results in large 
diffractional losses. With increase of the number of lasers in 
array, edge losses diminished, which results in lower 
threshold gains for all collective modes. 

It follows from the solution of problem (5) for 
eigenmodes and eigenvalues, available for the infinite array 
that threshold gains for both the cophased and the 
antiphased modes reached minima at z = zT/2. As can be 
seen from Fig. 2, the model of coupling of the "closest 
neighbours" does not describe that effect. Increasing the 
number N of lasers in array does not introduce any 
qualitative changes. 

It is natural to assume that this effect results from the 
neglect of diffractional coupling of remote lasers in the 
array. Indeed, the absolute values of matrix elements M2, 
M3,... increase with the distance z to the coupling mirror 
and the tridiagonal approximation for the matrix of 
diffraction coupling fails. Corrections for eigenvalues of 
collective modes may then be then retrieved using the 
perturbation method. 

We obtain in the first order of the perturbation theory 
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where γ
(k)
S  is the eigenvalue of the kth collective mode 

and S is the order of diffraction coupling (S = N – 1 

corresponds to an account of the optical coupling of all 

the lasers in the array). The eigenvalue yielded by the 

perturbation method for S = 1 coincides with the 

corresponding eigenvalue of the tridiagonal matrix M
∧

 (6). 
Figure 3 shows the dependence of threshold gains for 

the cophased and antiphased modes for different orders of 
diffraction coupling S. It can be seen that with increase 
of S the minima of the collective modes in threshold gains 
are formed in the vicinity of z = zT/2. The positions of 
these minima at the z axis tend toward the theoretical 
value z = zT/2 found for the infinite laser array. 

It should be noted, however, that according to the 
available experimental data on the behavior of threshold 
gains,5,6 the model of coupling of the "closest neighbours" 
is more adequate to situations found in practice. Indeed, 
the spread in the parameters of individual lasers results, 
under condition that ⎜M1⎜ . ⎜M2⎜ . ⎜M3⎜ ..., in direct 
coupling of the "closest neighbours" alone. 

 
 

FIG. 3. Threshold gain for the cophased (dashed curves) 
and antiphased (solid curves) mode vs. the distance to 
coupling minor z for different orders of diffraction 
coupling S. N = 10 and a/σ = 12. 

 

 
 

FIG. 4. Response function of phase Ψnl of the output 
radiation by the laser array vs. misalignment of the 
optical length of the lth channel of generation: a) l = 1, 
b) l = 2, and c) l = 3. N = 5, a/σ = 4, and z = 0.7 zT. 
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If the optical lengths of different generation channels 
are misaligned   by   ξn = zn – z0,   n = 1, …, N, the 
problem of eigenmodes and eigenvalues (5) can be written 
in the form:  

 

γ(k) E(k)′ = A
∧
 M
∧

 E(k)′; 
 

Anm = δnm exp{iϕn}; ϕn = 2k0 ξn , (8) 
 

where k0 is the wave number and k is the serial number of 
the collective mode. If we restrict ourselves to the case of 
small misalignments |ϕn| n 1, we may obtain, in the first 
order of the perturbation theory, the response of phase of 
the radiation of the cophased collective mode:  
 

Φ = 2k0 Ψ
∧
 ξ, (9) 

 

where Φ is the vector of phase of the output radiation and ξ 
is the vector of misalignment between the optical lengths of 

lasers. The elements of matrix Ψ
∧
 which are equal to 
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determine the response of the phase of radiation in the nth 
generation channel to unit misalignment in the optical 
length of the fth channel (see Fig. 4). 

The presence of coupling of the lasers in the array 
causes a distributed function of phase response. The change 
in length of a single channel results in a change in the phase 
profile of the entire array. Note that such a distributed 
response determines the characteristic correlation length of 
the phase profile of output radiation in the case of random 

misalignment in the optical lengths 2
04n k nl kl

l

kΦ Φ =  Ψ Ψ∑   

(see Ref. 7). The amplitude of the phase response decreases 
with displacement of the channel, in which the 
misalignment is introduced, toward the centre of the array. 
The effect is explained by the fact that the edge lasers have 
fewer neighbours in the array with which they may 
effectively couple, than the central ones, so that they 
undergo greater changes in response to unit external action. 

The given-above results demonstrate that both the 
phase profile and the mode composition of the output 
radiation of the array of optically coupled lasers may be 
controlled by varying the misalignment in their optical 
lengths. Further study of the efficiency of such control 
results in the need to account for the effect of the saturation 
of gains in the laser active media and for the dynamics of 
formation of fields so as to determine the limits of coherent 
regime of generation. 
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