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The algorithms currently used to control the parameters of light beams and their 

implementation to numerical experiments aimed at compensating for nonlinear 
distortions are reviewed. The reasons of the divergence of the algorithm of phase 
conjugation are discussed. Beam focusing by this algorithm is shown to depend on the 
chosen integration step along the longitudinal coordinate. The hysteresis dependences 
of the optical radiation power on the initial power of the light pulse are obtained. 

 
INTRODUCTION 

 
The compensation for amplitude phase distortions (in 

particular, nonlinear distortions) is of great interest for such 
practically important problems as transportation of light 
energy, optical detection and ranging of various objects, 
information transfer, etc., and it has been the focus of many 
studies for the last 15 years.1-5 Many principles of adaptive 
and programmable control of the light beam parameters 
were found with the help of mathematical modeling and 
computer simulation, which provide the basis for the 
present paper consisting of four parts. 

In the first part we consider the problems of 
organizing control of the light beam wavefront. The main 
attention is devoted to the problems which have so far 
remained outside the scope of reviews and have still 
received only insufficient study. The following problems 
should be noted among them: the effect of time delay in 
control channels and in generation of the response signal on 
the regime of operation of the adaptive system, the 
existence of invariants of nonlinear interaction of two 
waves, the existence of bistable dependences of the power 
received by a prescribed aperture on the initial beam power 
in the course of dynamic interaction between the waves, and 
the methods of numerical simulation. 

The second part is devoted to the problem of formation 
of wavefronts by various adaptive systems, in particular, to 
some problems of location of the actuators of a flexible 
mirror (there has been an increasing interest in these 
problems just now6,7) and of the necessary shape of the 
surface by a segmented mirror or by a system of phase 
conjugation (PC). The problem is also discussed of the 
number of modes necessary for efficient compensation of 
random distortions introduced in the wave by a thin 
turbulent layer. 

In the third part we discuss the choice of the optimal 
beam profile in the class of prescribed functions (hyper–
Gaussian, hyper–tubular, and elliptic) under various 
conditions along the propagation path. In particular, we 
discuss the problem of jitter of the energy centre of gravity of 
a profiled beam after it has passed through a layer of a 
fluctuating medium. The last part of the review covers a 
comparatively new class of problems in atmospheric optics: 
distortions of amplitude phase characteristics of light beams 
due to the change of the composition of the medium caused by 
chemical reaction within the region occupied by the beam.  

It is well known (see, e.g., Refs. 8 and 9) that the rate 
of absorption of light energy sharply increases near the 
resonances of the particular groups of molecules in a gaseous  

mixture. If the pulse duration significantly exceeds the 
relaxation time of the excited molecule whose energy 
transforms into heat, we may assume that the translational 
temperature of the gaseous mixture and the concentrations 
of its constituents vary upon exposure to the light beam. It 
is the approximation which is considered in the present 
paper. Note also that in addition to the problem of 
transportation of light energy and of information transfer, 
such a method can be implemented to the problems of 
atmospheric sensing and of spectroscopy. For this reason we 
present a brief review of our previous studies and discuss 
the peculiarities of numerical simulation of the process of 
interaction of light beams with a gaseous mixture whose 
composition changes upon exposure to the light beams.  

 
ALGORITHM FOR CONTROL OF THE LIGHT BEAM 

PARAMETERS 
 
Here we turn our attention to some peculiarities of 

calculation of the quality criteria and algorithms for control. 
One of the methods of control of the light beam 

parameters is the multidither algorithm which, in general, is 
described by a system of either differential or finite 
difference equations of the form10,11 

 

Lθ = γ
∧
Φ(J(θ, z, α)) , (1) 

 
where z is the distance to the receiver normalized to the 
diffraction length, α is the ratio of the beam power to the 
characteristic power of self–action, L is the linear operator 
determined by the adaptive system response function, 
θ = {θ1, ... , θM0

} is the vector of the light beam parameters 

being optimized, M0 is the maximum number of these 

parameters (i.e., the number of degrees of freedom), γ
∧
 is a 

matrix determining both the current change in the parameter 
being optimized and the sequence of control θj. The vector Φ 

depends on the way of estimating J (the quality of 
compensation) and on the algorithm implemented to calculate 
the increment of the functional. In particular, when we 
employ the gradient methods widely used in the analysis of 
the systems of cross–aperture sensing,1–7,10–12 we have 
Φg = ∂J/∂θ. Note that in recent years we have proposed the 

new methods of optimization of the light beam parameters, 
which differ from the conventional gradient methods10,13,14 
and are free of some disadvantages typical of the gradient 
method. 
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One more method of organizing control of the 
wavefronts is based on the algorithm of phase conjugation 

 

SN+1 = – SN
r  , N = 0, 1 , ...,  (2) 

 

where N is the iteration number, and Sr is the wavefront of 
radiation reflected from the object. As was demonstrated in 
Refs. 15–17, already at moderate nonlinearities the 
converge of the algorithm substantially degrades. However, 
since the lack of convergence may be caused by a numerical 
simulation rather than by the nature of the algorithm (see 
below), in my opinion it is necessary to study the 
convergence of the algorithm in ample detail employing a 
dynamic model of light beam propagation. 

During both programmable and adaptive control the 
method of calculation of the quality criterion is most 
important. The criterion is used to estimate the results of 
optimization of the light beam parameters. A number of 
such methods was proposed in the literature. One of them 
uses Langrange's identity18,19 to derive the adjoint system 
of equations relating the increment to the functional J to 
the increment to the parameters being optimized. This 
method is employed for programmable control of the beam 
parameters. 

The second method is based on the calculation of the 
criterion with the help of the reflected wave,4,7,16 which 
propagates in the field of the powerful incident wave. The 
possible effect of the reflected wave on the medium (i.e., on 
variation in the refractive index) is neglected. The 
fundamental property of interaction of counter propagated 
beams, that is, the symmetry of equations of propagation, is 
then violated resulting in the absence of invariant20–22 
characterizing the conservation of "phase" of interacting 
waves. If propagation is nonlinear, this fact undoubtedly 
affects the process of optimization of the light beam 
wavefront (i.e., the convergence of the adaptive focusing 
algorithm). It is also important to emphasize that a 
stationary model of operation of the adaptive systems (in 
the sense of propagation of a light beam) was always 
employed to describe the interaction between the incident 
and the reflected beams. That circumstance also imposes 
limitations on the results of modeling in the nonlinear 
media. This follows from the analogy between the modeling 
of adaptive focusing of the beam and the PC of the 
pumping counter propagated beams,23,24 one of these beams 
being formed due to the reflection of another beam from a 
mirror positioned behind the layer of the nonlinear medium: 
in both cases the iterative process of finding the solution 
follows the same principles, and the boundary conditions 
over the cross section of the receiver are interrelated. It is 
well known25,26 that in general in a transparent medium one 
fails to prove the convergence of the iterative process of this 
kind and may only demonstrate that it remains limited. The 
numerical simulation of the PC performed by us following 
the above–indicated scheme demonstrates that these 
iteration process always converges in the presence of 
dissipation of optical radiation. 

Second, in proceeding from the dynamic model of 
interaction to the stationary one, the time delay increases 
because of time needed for the initial wave to pass from the 
source to the receiver and in the reverse direction (the effect 
of the additional time delay is discussed below). The role of 
the time delay in the stationary model is played by the 
iteration number. 

Third, computer analysis of the dynamics of 
interaction between the counter propagated beams, for 
example, in the medium with local response, have shown 
the existence of bistable dependence of the power received 

by the aperture on the incident power and on the shape of 
the optical pulse. We shall now look into the problem. 
(Results on interaction of the counter propagating beams 
obtained by the author in cooperation with I.G. Zakharova 
and Yu.N. Karamzin and will be published elsewhere). In 
the case of significant difference between the lifetimes of 
lattices of dielectric constants induced by the interacting 
waves with different spatial periods (which is typical for 
semiconductors), the interaction of counter propagated 
pulses in the medium with local response is described by the 
following system of dimensionless differential variables: 

 
∂A+

∂t  + 
∂A+

∂z  + iΔ
⊥
A+ + iα(⏐A+⏐

2 + ⏐A–⏐
2)A+ = 0 ,  

 

∂A–

∂t  – 
∂A–

∂z  + iΔ
⊥
A+ + iα(⏐A+⏐

2 + ⏐A–⏐
2)A– = 0 (3) 

 

with the boundary conditions 
 

A+⏐z=0 = 
⎩
⎨
⎧exp(– ((t – t0)/τp)

2 – x2(1 + iθ)), t ≤ 2, t ≥ 7,

1 ,                                             
  

 
A–⏐z=z0

 = A+⏐z=z0
(1 – exp(– (x/Ra)

2)) exp(I arctan(x2/Rm)), 

2 < t < 7 , (4) 
 
where A

±
 are the complex amplitudes of the beams, incident 

upon and reflected from the receiver positioned in the cross 
section z0 = 1 of the beams and normalized by their maxima, t 

is time normalized by the time of the pulse propagation to the 
receiver, Δ

⊥
 = ∂2/∂x2 is the Laplacian operator with respect to 

the variable x (for simplicity, we analyze the case of 
propagation of the slit–shaped beams), Ra is the size of the 

receiving aperture expressed in units of the initial beam radius, 
Rm is the curvature of the mirror, τp is the parameter 

characterizing the pulse length and the steepness of the edges 
of the pulse, and θ characterizes beam focusing. It is 
apparently that when writing Eq. (4) it was assumed that the 
power of the beam either is absorbed by the receiver or passes 
through the aperture. Note that the above–described scheme 
of wave interaction was used by several authors in the 
experiments on the transverse optical bistability. 

Hysteresis dependences of the output power Pout(t) 

received by a Gaussian aperture of radius Ra on the initial 

beam power Pin(t) were found for a wide ranges of variation 

of the parameters α, Rm, θ, z0, Ra, and τp. Such a typical 

dependence is shown in Fig. 1, in which the arrows indicate 
the time variation of the initial power of optical radiation. The 
width of the loop and the number of such loops may be 
controlled by changing the nonlinearity parameter, the beam 
focusing, the radius of the aperture, and the curvature of the 
reflecting mirror. Analogous dependences were found for the 
beam power reflected back into the medium. The reason for 
such a dependence of the output power on the input one is the 
presence of a feedback between the incident and the reflected 
waves. For example, increasing the power of the incident 
beam intensifies its defocusing. As a result, the output power 
at the aperture Ra decreases and the fraction of power 

reflected back into the medium increases which again 
intensifies defocusing. Note that the central part of the 
incident beam is not reflected so that the incident optical 
radiation is focused with the lens induced by the reflected 
beam due to an intensity minimum on its axis, so that the 
power of optical radiation entering the aperture Ra increases.  
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Competition between these two processes results in 
complicated dependence of Pout on Pin which is shown in 

the figure. It can be easily seen that without the dynamic 
model, when we use the iterative procedure to find the 
solution, it may not converge, and the power will oscillate, 
for example, reproducing its own value in one iteration.  

It should be also noted that another characteristic time 
is present in the dynamic model, that is, time τd of the 

pulse propagation from source to receiver and in the reverse 
direction. For a closed system, in which the information 
about the reflected beam is used to focus the beam, that 
time plays the role of the delay time.27,28  When the ratio 
of time τd to the time constant of adaptation τa does not 

satisfy the condition 
 

τd/τa ≤ 0.37 , (5) 
 

oscillating (or divergent) regimes of operation of the 
adaptive system are realized under conditions of the 
continuous algorithm for control in the system of cross–
aperture sensing. Hence the adaptation constant must be 
limited from below for the stabilization of self–focusing. 
Note that analogous limitation (however originating from 
the condition of the maximum speed) appears during 
dynamic compensation for the beam self–action29 at τd = 0. 

If, on the other hand, the times are related to each 
other so that the condition 
 

τd/τa = π/2 + 2πn , n = 0, 1, 2, ..., (6) 
 

is satisfied, the adaptive system realizes a periodic regime of 
variation of the optimization parameters. For the values of 
τa and τd satisfying the inequality 
 

2πn < τd/τa < π/2 + 2πn , n = 1, 2, ..., (7) 
 

the beam is focused according to the principles of damped 
oscillations, and at times from the interval 
 

π/2 + 2πn < τd/τa < π(2n + 1) , n = 1, ... (8) 
 

the process of focusing diverges. Thus periodic intervals of 
instability occur in a system with time delay. 
 

 
 

FIG. 1 The dependence of power Pout(t) received by the 

aperture of Ra = 0.66 on the initial power Pin(t) for a 

Gaussian pulse. The parameters of the problem are as 
follows: α = 20, z0 = 1, τp = 2, t0 = 2, θ = 0, Rm = 0.33. 

 
 

FIG. 2. The dependence of the ratio τd/τa, at which the 

maximum speed is attained in the inertial adaptive 
system, on the inertial time delay τi/τd. 
 

The presence of inertia in the elements of the adaptive 
system, characterized by the time τi, results in a higher 

stability of focusing, on the one hand, and on the other – in 
slower speed of the system at greater times τi (see Fig. 2). 

Note that the fast adaptive system (τa < τd) may have 

periodic variations in the beam parameters with the 
spectrum that consists of 2n + 1 harmonics, provided the 
times satisfy the condition 

 

τaτiτ d
–2 = ( )3π

2  + 2π(n + 1)
–2

 . (9) 

 

Hence, with decreasing of τa the number of those harmonics 

grows as 1 + 2n . 
In conclusion of discussion of the problems associated 

with the algorithms for control we briefly consider some 
more important questions. It is well known that a speed of 
the system is very important for both adaptive and 
programmable control, because it is this characteristic which 
determines the quality of beam focusing onto the moving 
receiver during nonstationary self–action. Note that various 
techniques used to develop a faster adaptive control (and to 
attain its maximum speed) are minutely described in 
Ref. 10, in which the algorithms for control of focusing and 
the wavefront tilts at a maximum possible speed have been 
summarized. It is important to emphasize that such 
algorithms admit no further improvement in the class of 
gradient methods. 

Another comment is about the way of organizing 
control described in Ref. 30. The problems of stability of 
control according several simultaneous criteria of quality for 
different components of the vector {θi} (focusing and tilt) 

were touched upon elsewhere.31,32 In contrast to Ref. 30, 
those studies were based on the gradient method, which was 
preferable due to the following reasons. First, for the 
gradient method it is well known the approach which can 
be used to obtain the maximum speed and the optimal 
operation regime of the adaptive system. Second, in contrast 
to Ref. 30, it is (in general) not necessary to invert the 
matrix of gradients of functionals relative to the control 
parameters, which would otherwise considerably complicate 
the operation of the control system, as in the case of 
nonlinear propagation. Third, it is not necessary to know 
the extremal criteria, which are well known only for the 
linear medium. Fourth, the used iterative process30 is a 
three–point process, which also complicates the operation of 
the adaptive system. (This follows, for example, from 
Ref. 31, which suggests and analyzes three–point algorithms 
based on the gradient method). It is also important 
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 to emphasize that optimal conditions may only be realized in 
the case in which the extremal value of the functional is 
known (apparently, it may only be found a priori for a linear 
medium). Otherwise, as demonstrated by the analysis, if the 
parameter being optimized enters a certain interval around its 
optimum, the process of adaptation may be ceased. The length 
of the interval is determined by the error at which the 
extremum of the functional is prescribed. 

 
TABLE I. The dependence of the power of a Gaussian beam 
received by the aperture of Ra = 0.25 on the integration step 

along the longitudinal coordinate in the course of light beam 
focusing by the algorithm of phase conjugation. 
 

hz 
0.1 0.083 0.05 0.04 0.01 0.005 

P 0.164 0.171 0.192 0.2 0.223 0.238 
 
It should be also noted that the analysis of focusing of 

the Gaussian beam onto the Gaussian receiving aperture with 
Ra = 0.25, positioned at the beam cross section z = 1 of the 

linear medium, by the phase conjugation algorithm has shown 
that, depending on the step of integration along the 
longitudinal coordinate with the fixed cubic grid along the 
transverse coordinate, various concentrations of power could 
be attained at the receiver (see Table I). As for the nonlinear 
propagation (for example, in the cubic medium) various 
oscillating regimes were realized, in addition, the average level 
of these oscillations was determined by the step of integration 
along the longitudinal coordinate. Thus, to find a final 
solution of the problem of the nature of such oscillations in 
the quality criterion of the algorithm of phase conjugation one 
should model the process of focusing at the nodes of grids 
adaptable to the solution. 

The last comment is about the use of aberration–free 
description of beam propagation to analyze various algorithms 
for control. The dependences found from such an analysis were 
repeatedly confirmed by our numerical experiments. Similar 
confirmations may now be found in papers of other authors 
(see Ref. 7, for example), which yield the dependences of 
optimization efficiency on the path length and on the 
parameter of nonlinearity. It may be easily seen that they 
agree quite well with similar dependences reported in Refs. 34 
and 35. 
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