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We discuss formally rigorous method of constructing solutions of the ordinary differential 

equations in the problems of wave propagation through stratified inhomogeneous media. The method 
is based on transformation of a homogeneous differential equation to a formally inhomogeneous one, 
the operator of which admits exact geometrical optics approximation solutions. The inhomogeneous 
differential equation is conventionally reduced to Volterra integral equation, which is transformed to 
the canonical set of two ordinary differential equations of the first-order. We propose, for the 
obtained system, a rigorous method for constructing a sequence of approximations to the exact 
solution of the initial differential equation. The scheme proposed for constructing a sequence of 
approximations in solving an ordinary differential equation can be used in problems of wave 
propagation through stratified inhomogeneous media. The method is applicable in the presence of 
losses and has no restrictions on the scales of inhomogeneities. The validation of the method does not 
use asymptotic considerations. 

 

Introduction 
 

The geometrical optics approximation is widely 
used in solving various physical problems related to 
wave propagation (see, for example, Ref. 1). It is 

especially important in problems on wave propagation 
through smoothly inhomogeneous media. A formally 
rigorous approach to analyzing wave equations is 

presented in this paper by analyzing propagation  
of acoustic waves, as an example, in a stratified 

inhomogeneous medium; the approach is closely 
related to the geometrical optics approximation and 
is free of restrictions on the medium properties. 

As known,2 even small variations of the medium 
parameters can essentially influence its reflectance. 
Hence, a method for constructing solutions of wave 
equations is desirable, which allows one to successively 
approach the exact solution. Mathematically, the 
geometrical optics can be considered as the limiting 
case of the wave theory if assuming the wavelength 
to vanish. This allows the asymptotic methods to be 
used in validation of the geometrical optics and 
construction of a sequence of approximations. 

In this paper, the problem of constructing a 
sequence of approximations to the solution of an 
acoustic wave equation for a stratified inhomogeneous 
medium without the use of asymptotic methods is 
considered. The basic form of the geometrical optics 
approximation forms the basis for the method 
considered below, without the use of any asymptotic 
considerations (see, for example, Ref. 3). 

 

Basic set of equations 
 

Let the dependences of the parameters of a 

medium, in the case of acoustic waves, is set by the 
real functions ρ(õ) and ñ(õ), i.e., by the density of 
aqueous medium and by the speed of sound in it. 

Also assume the aqueous medium parameters to tend 
to constant values ρ–, ñ– and ρ+, ñ+ when õ → –∞ 
and õ → ∞, correspondingly.2 Within this model, the 
problem on emission of acoustic waves can be reduced 
to the equation for Green’s function  
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(x). Note, that the 

considered problem can be conventionally generalized 
to the case of slant incidence of the wave on a stratified 
medium, as considered, e.g., in Ref. 2. 

To construct the Green’s function G(x, k), it is 
sufficient to find a pair of linearly independent 

solutions of the homogeneous equation 
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It is just this problem that makes the subject of this 
study. As known,3 a starting point for seeking a 
geometrical optics approximation is solution of a 

steady-state wave equation for a homogeneous medium. 
Indeed, wave propagation through a medium with 
slowly varying parameters (at a fixed wavelength) is 
considered similar to this in the case of a homogeneous 
medium with solution parameters close to the 

parameters of inhomogeneous medium for the interval 
under study. This point of view does not use asymptotic 
considerations and can equally be considered as a 
special method. 

Based on the analogy with propagation through 
a homogeneous medium, solutions of Eq. (2) are to 
be sought using the following scheme. Let us introduce 
a pair of functions 
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asymptotical behavior of which is specially normalized 
at infinity. These functions do, formally, satisfy the 
homogeneous equation  
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The function χ(x) is called Schwarzian (see Ref. 4, 
Vol. 5). The Schwarzian is invariant with respect to 
fractional linear transformations of the defining 
function n(x).  

Transform the homogeneous Eq. (2) to the 
inhomogeneous equation of the form 
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It is convenient to consider Eq. (2) in the form 
of Eq. (6), as the functions (3) are solutions of the 
homogeneous equation for the functional in the left 
part of Eq. (6). Thus, the problem of constructing 
solutions of Eq. (2) is reduced to constructing solutions 
of the inhomogeneous Eq. (6). Note, that the performed 
transformations are rigorous and are not based on 
asymptotic considerations. Moreover, they do not 

require any smoothness of the medium properties. In 
the case when the function n(x) can vanish the function 
χ(x) has singularities; but this case is not considered 
in this paper. 

Following a conventional way, transform the 

inhomogeneous Eq. (6) to an integral equation 

establishing the corresponding conditions at infinity. 
For this purpose, construct the Green’s function of 
the following equation: 
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Since the complete set of solutions of the 
homogeneous equation defined by the functional in 
the left-hand part of Eq. (7) is known, the Green’s 
function is to be defined as a linear combination of 
these solutions at õ < x0: 

 0 – –( , ) ( , ) ( , ).G x x C f x k C f x k
+ +

= +  (8) 

Consider the Green’s function as zero at õ > x0. 
There are two conditions for determining the 

coefficients of this linear combination, i.e., continuity 
of the Green’s function at the point õ = x0 and the 
constraint to the difference of its derivatives at this 
point. The linear set of equations follows from these 
conditions, by solving which we obtain 
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where 
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Since the equation under study does not contain 
the first derivative, the function Δ(õ, k) = Δ(k) and 

its value (k and n(x) are real) can be calculated, e.g., 
at õ → ∞. It is easy to show that this value equals to 
Δ = –2ik. Again, after convenient transformations, 
we obtain the Green’s function in the following form: 
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which is identically zero at õ > x0. Note, that the 
Green’s function (11) plays an auxiliary role, so there 
is no need to formulate conditions for the radiation 
at infinity. Such conditions are meaningful only for 
the Green’s function that corresponds to the initial 
problem on the emission of waves. 

With the help of Green’s function (11) Eq. (6) 
can be reduced to Volterra integral equation  
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The same equation can be written in the form 
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Now introduce a pair of functions defined by the 
equations 
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Differentiating these functions, we obtain the set 
of differential equations 
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The second set of differential equations defining 
the second linearly independent solution of the initial 
wave equation u–(x, k) can be obtained in a similar 
way. If one forms the first column of the matrix Z(x, k) 
from ( , )u x k

±

+  components of the solution u+(x, k) and 
the second column from the ( , )u x k

±

−  components, then 
two sets of introduced equations take the following 
form, in the matrix representation 
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where I
α
 are the Pauli matrices, I+ = (I3 + iI2)/2. In 

passing from system (15) and from the second one 
(analogous to it) system, to the matrix equation (16) 
the following equations were used:  
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In passing to the new function by use of the 

substitution 
[ ]0
1
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the form 
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It follows from Eq. (18) that the reflection ceases to 
decrease with the increase of frequency if the 

Schwarzian is limited, which is the case with acoustic 
waves. 

Equation (18) can be written as 
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If one introduces the designations that  
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then Eq. (19) takes the form  

 
[ ]

[ ] [ ]
0

0 01
33 1

d ( , )
( ) ( , )

d

Z x k
i x I Z x k

x
= α +  

 [ ] [ ]0 0

22 1
( ) ( , ).x I Z x k+α  (21) 

The subscript of the coefficients shows that this is 
the coefficient of the Pauli matrix with the same 
subscript, while the superscript indicates the 

coefficient at the corresponding iteration step. The 
subscript of the target matrix points to a missing 
item with the corresponding Pauli matrix while the 
superscript shows the cycle number of the three 
successive eliminations of the equation terms. This is 
considered in detail below. 

 

Scheme of constructing the solution 
 

Consider the scheme for constructing a sequence 
of approximations to the exact solution on the basis 

of Eq. (21). To do this, demand the following 
condition to hold 
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in order to fix the set of solutions sought. Introduce 
the function 
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with the condition of the type (22) at infinity. In the 
case of real n(x) and k the function [ ]0

3
( )xα  is to be 

real and the matrix exponent [ ]1
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Such a function form has been chosen to ensure the 
fulfillment of the condition (22) for the matrix 

[ ] [ ]1 1

3 3
( , ) ( )Y x k Y x= . Note, that such a form of this 

(matrix) function is similar to the geometric optics 
approximation but with somewhat different phase in 
the exponent. 

Let us introduce the designation 
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to the following equation:  
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Here the Pauli matrix property I2I3 = iI1 is used. 
Introducing the corresponding notations, Eq. (26) can 
be written in the standard form 
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Now introduce the solution 
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with the condition of the type (29) at infinity. This 
solution has the form 
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for the matrix [ ]2
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in Eq. (31) are defined by the equations 
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If one introduces now (the third step) the solution of 
the equation  
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Eq. (32) can be reduced to the form  
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Equation (36) is analogous to Eq. (21) and, hence, 
its solution can be constructed by the above-described 
algorithm. The only distinction is that the condition 
at infinity is to be analogous to Eq. (29) for all the 
matrices introduced. Emphasize, that the above-

considered algorithm allows recurrent construction of 
the successive approximations within a formally 

rigorous scheme at weak constrains on the coefficients 
of the initial equation. 

Consider some properties of the equations obtained. 

If one interprets the functions ±

+ ( , )u x k  and ( , )u x k
±

−  
introduced as parts of the solution describing the 

energy transfer along one of two possible directions, 
then the reflection function can be introduced (by 

definition) by setting ( , ) ( , )/ ( , ).R x k u x k u x k
− +

+ + +
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this function it follows, from Eq. (18), the Riccati-
type equation 
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Note, that the reflection function obeys the zero 
conditions at infinity, which corresponds to the absence 
of reflection from an infinitely distant part of the 
medium. This is true if the field source is situated to 
the left of the inhomogeneous part. Analogous equation 
can be obtained for the second linearly independent 

solution.  
 

Conclusion 
 

 The presented approach to study solutions of 
Eq. (1) formally resembles the geometrical optics 
method for the one-dimensional case at its first steps. 
In fact, this is different approach based on the fact 
that if the solution of an equation with close, in some 
sense, coefficients is known, the problem can be set 
on studying properties of solutions of the target 
equation using an integral equation obtained from an 
inhomogeneous differential equation. Which solutions 
of an auxiliary equation are to be used for integral 
equation construction is determined by a problem and 
can be unrelated with the geometrical optics method at 

all. Thus, the approach used in this work is general. 
  Besides, the recurrent scheme for construction of 
the sequence of approximations to the exact solution 
is proposed, which is formally independent on any 
supposition on the coefficients of the initial equation. 
The scheme proposed can also be used to study wave 
propagation through stratified media. Some changes 
are possible in the case of reflecting boundaries, e.g., 
like in problems of vertical sounding of the ionosphere. 
  Practical efficiency of the scheme proposed can 
be studied based on mathematical simulation of the 
propagation processes in various cases of independent 
interest.  
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