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Feasibility of noninterferometric techniques of the phase distribution 
measurements in the laser beam cross-section for visualization of the vortex 
dislocations of optical speckle-field wave fronts are analyzed.  It has been 
established that the diffraction Hartmann sensor and wave front sensor based on 
measurements of the intensity in the beam cross-section allow the positions of the 
dislocation centers to be obtained and spatial configuration of the intensity zero-
lines to be retrieved. 

 
Light propagation through a randomly 

inhomogeneous medium leads to random distortions of 
the amplitude and phase of optical field due to 
interference, and the spatial distribution of intensity 
has a speckle structure. Study of speckle fields may 
help solve problems of adaptive optics, star speckle-
interferometry, and image reconstruction.  It is a 
remarkable peculiarity of the speckle fields that there 
are dislocations in such fields which are the areas where 
the optical wave phase becomes undetermined and the 
intensity vanishes.  The dislocations may exist in free 
space and completely determine the field structure.  
The wave front in the vicinity of a dislocation point is 
a helicoid with the axis along the amplitude zero line 
(Fig. 1). 

 

FIG. 1.  Wave front in the vicinity of a dislocation. 
 

The most widely spread way of experimentally 
studying the dislocations is interferometric or 
holographic2,3 recording of optical speckle fields.  
Defects in the wave front develop on interferograms as 
œforksB or branching of the interference fringes.  The 

bifurcation points coincide with the intensity zeros 
which can not be distinguished from nonzero local 
minima of the intensity against the background of a 
random speckle structure.  Moreover, the occurrence 
isolated intensity zero is not a sufficient condition for 
the screw dislocation existence at a given point.  As an 
example, it is worth considering the intensity of a wave 
field which is a difference between the fields of two 
coaxial Gaussian beams. 

Interference methods of wave field diagnostics2,3 
are sufficiently difficult to perform and not always 
applicable for practical measurements.  Therefore, it is 
useful to consider the methods of identifying the wave 
front dislocations on the basis of the measurements of 
intensity distribution I(ρ, z) in the beam cross-section 
ρ{x, y} and to compare their potentialities with those of 
the diffraction wave front sensors, for example, 
Hartmann sensors.4 

The field of a Gauss$Laguerre optical beam was 
chosen as a test object since the phase front of such a 
field has all features characteristic of the wave fronts in 
optical speckle fields.  It is known,5 that slowly 
varying amplitude of a Gauss$Laguerre optical field 
generated with a resonator composed of spherical 
mirrors is written as follows: 

 

U(r, ϕ) = ∑
m,n

 gmn ± Amn ± (r, ϕ); (1) 

 

Amn±(r, ϕ) = 
4r 

2
 m!

π (m + l)! L
n
m(2r 

2) exp {$ r 
2 ± inϕ}, 

 

where m and n are the radial and angular mode indices; 

r = x′2 + y′2 and ϕ = arctan (y′/x′) are the polar 
coordinates, x′ and y′ are the Cartesian coordinates 
normalized by the effective beam radius a;  gmn ± are 

the complex mode amplitudes; Ln
m is the Laguerre 
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polynomial.  It is an important property of the Gauss$
Laguerre modes,5,6 when they degenerate, that in this 
case the laser emission frequency is determined by a 
combination of the transverse mode indices l = 2 m + n. 
For example, when l = 1 the degenerate family consists 
of two modes5 and in the steady state the initial field 
has one dislocation on the beam axis.  When l = 2 the 
degenerate family consists of three modes5 

 

A10 = 2/π (1 $ 2 r 
2) exp {$ r 

2};  

A021 = 2/π 2 r 
2 exp {$ r 

2 + 2i ϕ}; 

A022 = 2/π 2 r 
2 exp {$ r 

2 $ 2i ϕ}; 

 U(r, ϕ, 0) = A10(r, ϕ) g1 + A021(r, ϕ) g2 + A022(r, ϕ) g3. (2) 
 

At a distance z from the source the field, after 
substitution of Eq. (17) into the Kirchhoff integral, 
takes the form 

 

U(x, y, z) = Ω (1 + Ω2)$3/2 exp {3i arctan Ω + 
 

+ 
Ω
2 

x2
 + y2

(1 + Ω2)
 (i $ Ω)} g, (3) 

 

where Ω = ka2/z is the diffraction parameter, k is the 
wave number.  The number of dislocations in the beam 
cross-section depends on5 ratios between the amplitudes 
g1, g2, and g3.  The intensity and phase distributions in 
the plane Ω = 1 in the case of four wave front 

dislocations (g1 = 1 + i, g2 = $ g3 = g1/ 2), are shown in 
Fig. 2. 
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FIG. 2.  Phase distribution (a) and intensity 
distribution (b) in the beam cross-section. 
 

The phase dislocation distortions restrict the 
efficiency of correction or inversion of wave front with 
the use of deformable mirrors, since the mirror surface 
can not be transformed into the surface with the screw 
dislocation without violation of the continuity 
condition.  Therefore a problem arises on obtaining a 
smoothed approximation of a wave front.  In Ref. 7 we 
proposed to use the potential phase as such an 
approximation 

 

Sp(ρ, z) = 
k

4π2 ⌡⌠    ⌡⌠ 
D 

d2ρ0
I(ρ0, z) 

∂
∂z × 

 

× ⌡⌠    ⌡⌠ 
$∞

∞

d2ρ′
0   

I(ρ′
0, z) (ρ0 $ ρ′

0) (ρ $ ρ0)

(ρ0 $ ρ′
0)

2
 (ρ $ ρ0)

2  ,  (4) 

 

reconstructed in the area of the entrance pupil D 
bounded by the contour c from the potential 
component of the Umov$Pointing vector 
Lp (ρ, z) = I (ρ, z) ∇Sp (ρ, z).  The whole Umov-
Pointing vector consists of the potential and vortex 
components 
 

L (ρ, z) = I(ρ, z) ∇S(ρ, z) = Lp (ρ, z) + Lv (ρ, z). (5) 
 

In the diffraction sensors the wave front slopes 

μ(x, y) = 
∂

∂x S(x, y) and ν(x, y) = 
∂

∂y S(x, y) are 

measured and then the phase is retrieved, as a rule, 
based on solution of the system of linear equations.  In 
this case, as was pointed in Refs. 8 and 9, a task to 
find the phase becomes equivalent to solving of the 
Poisson equation 

 

Δ⊥S(x, y) = 
∂

∂x μ(x, y) + 
∂

∂y ν(x, y) (6) 

 

with the boundary condition c: S(x, y)⎥c = 0.  It is 
obvious that when the vector field of the phase 
gradient ∇⊥S (x, y) has a solenoidal component 
∇⊥Ss(x, y) for which ∇⊥⋅{∇⊥Ss(x, y)} = 0 (for the 
divergent component the condition 
∇⊥ × {∇⊥S∂(x, y)} = 0) then, when solving Eq. (6), we 
obtain the filtered value of the phase, i.e., its divergent 
component S∂(x, y) corresponding to the divergent 
component of the whole phase gradient 
 

∇⊥S(x, y) = ∇⊥S∂(x, y) + ∇⊥Ss(x, y). (7) 
 

It is just the solenoidal component that makes the 
main peculiarity of the structure of wave fronts with 
dislocations.  Moreover, this component increases, with 
increasing turbulence intensity along the path or 
increasing length of the path.  Therefore, conventional 
procedures of the phase correction based on 
compensation for ∇⊥S∂(x, y) give poor results under 
conditions of strong intensity fluctuations.9 

The divergent phase S∂(x, y) is calculated by the 
Poisson integral formula10 for the case when D is the 
circle of radius R 
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S∂(ρ, z) = ⌡⌠    ⌡⌠ 
D 

⎣
⎡

⎦
⎤∂

∂x μ(r, z) + 
∂

∂y ν(r, z)  G(r, ρ) dr;  (8) 

 

G(r, ρ) = 
1
4π ln 

R 
2 + r 

2ρ 
2/R 

2
 $ 2 rρ cos(ϕ $ ϕ′)

r 
2 + ρ 

2 $ 2 rρ cos(ϕ $ ϕ′)
 ; 

 

r {r cos ϕ′, r sin ϕ′},  ρ {ρ cos ϕ, ρ sin ϕ}. 
 

Figure 3a presents the beam potential phase, 
retrieved by formula (4) for four dislocations and 
Fig. 3b presents the divergent phase calculated using 
Eq. (8).  In both cases the phase distributions obtained 
allow the wave front dislocations to be identified and 
localized.  But the potential phase is retrieved from the 
measurements of intensity distributions in two beam 
cross-sections and the measurements of local slopes of 
wave front by Hartmann matrix is the much more 
complicated problem.4 
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FIG. 3. Potential phase (=) and divergent  phase (b). 
 
Let us now consider a question on the relation 

between the potential and vortex phases introduced in 
our previous paper7 and determined by the potential 
and vortex components of the Umov$Pointing vector 
with the divergent and solenoidal phases.  It is evident, 
that every term of the whole Umov$Pointing vector 

 

L⊥(x, y) = I(x, y) ∇⊥S(x, y) = I (x, y) ∇⊥S∂(x, y) + 
 

+ I (x, y) ∇⊥Ss(x, y), (9) 
 

can be presented as a sum of the potential and vortex 
components in the general case.  Therefore, L⊥p and, 
consequently, ∇⊥Sp(x, y), have components, depending 
on the divergent and solenoidal components of the 
phase gradient.  The vortex component of the Umov$
Pointing vector and vortex phase are formed in the 

same manner, therefore, the potential and divergent 
phases do not coincide in the general case.  They are 
equal to each other when the field has a single 
dislocation and ∇⊥I(x, y) × ∇⊥S∂(x, y) = 0 and 
∇⊥I(x, y) ⋅ ∇⊥Ss(x, y) = 0. 

Preliminary calculation of the wave aberration4 
shows that the use of the potential phase to make 
corrections for phase distortions in the adaptive optical 
system working in the turbulent atmosphere is not more 
effective than the use of the divergent phase.  The 
explanation is that the potential phase contains not all 
the divergent phase although it includes a part of the 
solenoidal one. 

Thus, measurements of the potential and divergent 
phases allow us to localize the centers of the screw 
dislocations of the optical beam wave front and, 
therefore, to find positions of the exact intensity zeros 
which are the indicators of dislocations and can not be 
selected against the background of numerous local 
minima in the random transverse distribution of the 
speckle field intensity.  Combination of such zero 
points corresponding to different values of the 
longitudinal coordinate z allows the positions of zero 
lines which are the œskeletonB of the wave field11 to be 
reconstructed. 
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