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The clearing of polydisperse water droplet aerosol upon exposure to a laser 
beam at high altitudes in the atmosphere with the wind at low pressures and 
temperatures is considered.  It is shown that the linear dependence between the 
evaporation rate and the radiation intensity is violated for diffusive$convective 
and subsonic regimes of evaporation.  The aerosol clearing problem is solved with 
the use of the water droplet size distribution.  This solution is compared with the 
liquid water content approximation. Applicability limits of the liquid water 
content approximation are extended to include the diffusive regime of evaporation. 

 
In Refs. 1$4 the clearing was described with the 

help of the smooth liquid water content function 
w(r, t), where r = (x, y, z) is the radius$vector of the 
observation point, whose physical sense is the liquid 
water content in a unit volume averaged over the 
macroscale of the beam radius r0.  The microscale is 
defined by the water droplet radii a << r0.  The water 
droplet size distribution is described by the function 
f(r, a, t) (see Refs. 4$10).  The radiative transfer 
equation for the function w (see Refs. 4, 5, and 11$14) 
is derived from the equation for f for linear dependence 
between the water droplet evaporation rate and the 
intensity of the incident radiation.  The clearing of the 
water droplet aerosol in the liquid water content 
approximation considering self$refraction and thermal 
self$action of the beam due to gas heating was studied 
in the context of geometrical (see Refs. 15$18) and 
wave (see Refs. 19$23) optics.  Versions of the analytic 
Glickler solution (see Refs. 1, 4, and 24) are discussed 
in Refs. 11$14, where the voluminous experimental 
results are also presented. 

The rate of change of water droplet radius da/dt 
is proportional to the water vapor flow j from its 
surface and depends on many parameters.  The 
investigations of the evaporation regimes began in 
Ref. 25; their classification, including the explosive 
regime of destruction (see Ref. 26) was given in 
Refs. 11$24 and 27.  The fact that the counter pressure 
is of primary importance for gas dynamic regimes was 
established later in Refs. 28$30.  As functions of the 
water droplet evaporation rates on the external 
boundary of the Knudsen layer, the full set of the 
evaporation and destruction regimes can be written in 
increasing order the absorbed radiation intensity, 
namely, d i f f u s i v e, d i f f u s i v e $
c o n v e c t i v e, s u b s o n i c, s o n i c, and 
e x p l o s i v e.  As functions of the water velocities 
inside the water droplet, the following water droplet 

heating regimes can be identified in increasing order of 
the heat release: h e a t c o n d u c t i v e, h e a t 
c o n d u c t i v e$c o n v e c t i v e, c o n v e c t i v e, 
n o n i s o b a r i c, and i s o c h o r i c (see Refs. 31 
and 32).  The correspondence between evaporation and 
heating regimes was established in Refs. 32 and 33. 

Violation of the linear dependence between the 
evaporation rate j and the radiation intensity I for all 
regimes except slow$diffusive one raises the question 
about the validity of the liquid water content 
approximation.  Satisfactory agreement with the 
experimental data indicates the possible wider range of 
application than in the rigorous formulation of the 
problem.  Investigations of the applicability limits for 
the liquid water content approximation on the 
microscale of the water droplet radius a is the subject 
of this paper.  The methods for derivation of solutions 
for the function f (Refs. 34$42) based on analytic 
relations between f and initial distribution (see Refs. 6, 
13, and 34), the application of the solution for the 
water droplet trajectory, and the direct numerical 
methods are well known.  The last are used here. 

Let the function of electromagnetic field u be 

normalized to I0, where I0 is the characteristic 
intensity I = u*u, the coordinate z along the beam axis 
be normalized to the path length L, and the transverse 
coordinates x, y be normalized to the initial beam 
radius r0.  Then the dimensionless equation of the 

paraxial wave optics (the nonlinear Schro⋅⋅dinger 
equation) taken the form 

 

$ 2iF 
du
dz + ∇

→
⊥
2
 u = F [$ 2iFNT ρ1 + iNb α/α0] u, (1) 

 

u⏐z=0 = u0(x, y) ≡ exp($ (x2 + y2)/2),  
 

u⏐x,y→±∞ → 0.   (2) 
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Here, F = 2πr0
2
/λL is the Fresnel number, λ is the 

radiation wavelength; Nb = α0L is the parameter of 
radiation extinction by the water droplet aerosol, α is 
the extinction coefficient, α⏐t=0 = α0; 
NT = Q(r0/L)2 (n0 $ 1)/n0 is the thermal self$action 
parameter, n0 is the refractive index of the unperturbed 
gas, Q = (αе I0 t0)/ρ0 h0 is the scale of perturbation of 
the gas density, Δρ/ρ0 = Qρ1, ρ1 is the dimensionless 
function of the gas density perturbation, ρ0 and h0 are 
the density and the enthalpy of the unperturbed gas, t0 
is the pulse duration or t0 = r0/V0, and V0 is the 
velocity of the transverse flow.  The x axis is directed 
along the transverse wind component V(z) 
(independent of x and y by virtue of the condition 
r0 << L; here V(z) ≡ V0 is taken), and the longitudinal 
wind component does not influence the clearing.  The 
coefficients of the absorption, extinction, effective 
absorption, and the efficiency of aerosol evaporation 
α=, α, αе =  α=(1 $ β), and β, respectively, are 

 

αa(r, t) =  πN ⌡⌠
0

∞

 a2 Ka(a) f(a) da,  (3) 

 

α(r, t) =  πN ⌡⌠
0

∞

 a2 K(a) f(a) da, K(a) =  b(a) Ka(a), (4) 

 

αe(r, t) =  πN ⌡⌠
0

∞

 [1 $ βa(a)] a2 Ka(a) f(a) da ≡ αa(1 $ β), (5) 

 

βa(a, r, t) =  
 jHw 

jHw + jT
 ,      

 

β(r, t) =  πN ⌡⌠
0

∞

 βa a2 Ka(a) f(a) da/αa. (6) 

 
Here, K(a), Ka(a), and b(a) are the extinction and 
absorption efficiency factors of a single water droplet 
and their ratio (Refs. 12 and 13), N is the particle 
number density (here, N =  N0 =  const), j and jT are 
the densities of mass and heat fluxes from the water 
droplet surface to the air, Hw is the specific heat of 
water evaporation.  The equation for the function f and 
its initial distribution have the forms 

 

 ∂f
 

∂t  + V(z) 
 ∂f

 

∂x + 
∂
∂a ⎣
⎡

⎦
⎤f 

d=
dt  =  0,   ⌡⌠

0

∞

 f(a) da =  1, (7) 

 

f0(a0) =  
nn+1

Γ(n + 1) 
a0
n

a m
n+1 exp ⎝

⎛
⎠
⎞$ n 

a0

am
  , (8) 

 
where Γ(n) is the gamma function.  The integral of the 
function f over the radii a is normalized to unity.  The 
initial distribution f0 is chosen in the Khrgian$Mazin 

form (Refs. 42), n = 2.  The modal (most probable) 
radius am is changed from 0.5 to 5 μm.  The 
homogeneity condition of optical field inside the water 
droplet 8πκ=/λ << 1 (where κ = 0.0662 is the 
absorption index of water, λ = 10.6 μm) is taken to be 
true.  Heating and the evaporation of the water droplet 
are described by the following system of equation: 

 

d=
dt ≡ 

a
t + V(z) 

∂a
∂x = $ 

 j
 

ρw
,   a⏐t=0; x=$∞ =  a0, (9) 

 

ρw Cpw 
dT
dt  =  αdI $ 

3
a {jHw + jT},   T⏐t=0; x=$∞ =  T∞,  

  (10) 
 

j =  

⎩⎪
⎨
⎪⎧

<ρD>
a  ln ⎝

⎛
⎠
⎞1 $ Y∞

1 $ Yc
 , Td < T*,

Mc pc γ μ/(RTc) , Td ≥ T*,

 (11) 

 

jT =  j × 

⎩⎪
⎨
⎪⎧
(Tc $ T∞) <k> <Cp/k>

exp(ja <Cp/k>) $ 1 , Td < T*,

Cp(Tc $ Td) + uc
2
/2, Td ≥ T*.

 (12) 

 

Here, ρw and Cpw are the density and the heat capacity 
of water; αd =  3Ka(a)/4a is the mean volume 
absorption coefficient of water droplet; T is the mean 
volume temperature of the water droplet; T∞, Td, and 
Tc are the temperatures of air, water droplet surface, 
and water vapor on the external boundary of the 
Knudsen layer; T = 381$375 K (a = 1$10 μm) is the 
temperature separating the diffusive$convective and 
subsonic regimes of evaporation (Ref. 30); Yc and Y∞ 
are the mass concentrations of water vapor in the 
Knudsen layer and in ambient air; <ρD> <k> <Cp/k> 
is the temperature averaged product of the density of a 
mixture of water vapor with air by the coefficient of 
diffusion of water vapor into the air, the thermal 
conductivity of the mixture, and the ratio of the heat 
capacity to the thermal conductivity; γ and μ are the 
adiabatic exponent and the molar mass of water vapor; 
uc, c, and Mc = uc/c are the velocities of water vapor 
and sound and the Mach number, respectively, on the 
external boundary of the Knudsen layer; R is the 
universal gas constant.  The procedure for calculating j 
and jT is described in Refs. 30$33. 

The water droplet, as a rule, evaporates more 
slowly then heats, so dT/dt ≈ 0 on the scale of 
evaporation time.  In the approximation of the 
monodisperse aerosol, a =  const =  am and  
βa(a) ≈ const =  βd are taken. From Eqs.(6) and (9), we 
obtain 

 

da
dt ≈ 

Ka(a) βd I

4ρw Hw
 . (13) 

 
Let us multiply Eq. (9) by 4πNρw a3/3 and 

integrate it over the radii a (accounting that 
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a4f(a)⏐a→∞ → 0).  We derive the transfer equation for 
the function of the liquid water content w 

 

w =  
4
3 πNρw ⌡⌠

0

∞

 a3 f(a) da, (14) 

 

∂w
∂t  + V(z) 

∂w
∂x  =  $ wI 

αd βd

ρw Hw
 ,   w⏐t=0; x→$∞ =  w0(z). (15) 

 
Thus, the liquid water content approximation is exact 
for the monodisperse aerosol, the constant efficiency of 
water droplet evaporation, and the linear dependence 
described by Eq. (13).  The dimensionless equation 
(15) contains the clearing parameter Nvw =  t/tv equal 
to the ratio of the characteristic heating time of the 
aerosol t0 to its characteristic evaporation time 
tv =  Hw ρw/(αd I0 βd). In the liquid water content 
approximation the parameters of extinction and thermal 
self-action in Eq. (1) are Nbw =  αd β(am)L, 
NT =  αdI0t0(1 $ βd)(r0/L)2 (n0 $ 1)/(n0ρ0h0).  The 
parameter of evaporation of a single water droplet 
Nva =  Ka(a) βa(a) I0 t0/(4ρw Hw am), Nva(am) =  Nvw/3 
enters dimensionless equation (7).  In analogy with the 
liquid water content approximation we introduce the 
integral parameter of clearing of the polydisperse 
aerosol 

 

Nv =  ⌡⌠
0

∞

 Nva(a) f(a) da. (16) 

 

For the polydisperse aerosol all parameters a, j, I, 
βa, Td, and Mc change and are interconnected.  The 
intensity decreases toward the beam edges and along 
the beam axis, the water droplet radii decrease as time 
increases, the temperature of the water droplet surface 
increases upon heating, and the efficiency of droplet 
evaporation changes with time even for the 
monodisperse aerosol model.  While using one of the 
above quantities as a parameter, for example the water 
vapor flow rate, the Mach number Mc, the intensity I, 
or the water vapor flow j we can identify in the 
increasing order of the local intensity I the following 
regimes of evaporation: diffusive, diffusive-convective, 
subsonic, and sonic. 

The assumption that the parameter βa is 
independent of the intensity I and the assumption 
about linear dependence (13) are strictly satisfied only 
for low intensities I in the lower limit of the diffusive 
regime of evaporation and for high intensities in the 
subsonic and sonic regimes.  At great altitudes in the 
atmosphere, low temperatures T∞, and low air pressures 
p∞ in the course of clearing the conditions can be 
realized when relatively small changes of water droplet 
radius a or the intensity I by a factor of 1.5$2 may 
change the parameter βa by an order of magnitude.  The 
efficiency of the aerosol clearing significantly decreases.  
Investigations of the clearing of condensation tracks of 

stratospheric supersonic aircraft that are being 
developed now (Refs. 43$45), are centered around the 
problems of atmospheric pollution and impact of 
aviation on the atmosphere, face the above-named fact. 

The boundaries of the region of nonlinear 
dependence j(I) at T∞ =  253 K and pressures 
corresponding to altitudes of 0 and 18 km are drawn on 
the droplet radius $ radiation intensity plane in Fig. 1.  
In a hot jet stream of the airplane the temperature T∞ is 
higher than the atmospheric temperature.  The lower 
solid curve is for a 3% deviation of the dependence j(I) 
from the linear law in the diffusive regime.  The 
position of this boundary is independent of the 
pressure, i.e., of the altitude above see level.  The 
upper boundaries (the dashed lines) are for the subsonic 
regime with jT =  0 and counter air pressure p∞ 
corresponding to altitudes of 0 and 18 km.  The region 
where assumption (13) (under which equation of 
heating of the medium (15) in the liquid water content 
approximation is obtained) is violated, lies between the 
upper and the lower boundaries.  This region (see 
Fig. 2) is relatively small at Š∞ =  293 K (in it, 
106 W/m2 ≤ I ≤ 3⋅107 W/m2, a =  5 μm); it increases 
several times at Š∞ =  253 K 
(6⋅104 W/m2 ≤ I ≤ 7⋅107 W/m2; a =  5 μm) and 
increases only slightly with the further decrease of the 
temperature T∞. 

 
FIG. 1.  Boundaries of violation of the linear 
dependence j(I) between the evaporation rate j and 
the radiation intensity I in the coordinates radiation 
intensity I $ water droplet radius a.  The solid curve 
is for a 3% deviation in the diffusive regime (altitude 
range 0$18 km), the dashed curve is for the subsonic 
regime (jT =  0 and βa =  1 at altitudes of 0 and 
18 km), the dot-dash curve is for the lower boundary 
of the validity of the liquid water content 
approximation, and the cross indicates the ranges of 
variations of the examined parameters.  The air 
temperature was T∞ =  253 K. 
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FIG. 2.  Boundaries of violation of the linear 
dependence j(I) in the coordinates radiation intensity 
I $ air temperature T∞.  The water droplet radius was 
a =  5 μm.  The solid curves are for a 3% deviation in 
the diffusion regime (at altitudes of 0, 10, and 18 km) 
and the dashed curves are for the subsonic regime (at 
altitudes of 0 and 18 km).  The symbols ⌧, ⊗, and ∅ 
indicate the ranges of variations of the examined 
parameters and individual calculations, respectively. 

 
The above-indicated range of variation of the 

parameters corresponds to the conditions of forming the 
clearing channel in the condensation jet stream.  The 
diffusive-convective and subsonic regimes of 
evaporation are realized for the above-indicated ranges 
of variations of the intensity (Ref. 30). 

Numerous experimental data show that the liquid 
water content approximation describes satisfactorily the 
clearing process in the region wider than the region of 
linear dependence j(I).  The algorithm was developed, 
the computer code was created, and the solutions were 
obtained for more rigorous physical-mathematical model 
(Eqs. (1)$(12)) that considered the droplet size 
distribution and nonlinear relations of all parameters a, 
j, I, βa, Td, and Mc for the purposes of rigorous 
determination of the applicability limits of the liquid 
water content approximation and establishing 
limitations and estimating the errors of calculation of 
individual physical parameters for this effective model 
of clearing description.  These solutions are then 
compared with the solution in the liquid water constant 
approximation (Eqs. (1) and (15)). Details of solution 
for individual parameters, including spatiotemporal 
distributions and dependences on the spectrum of 
particle radii a, are given in Ref. 46.  The 4-
dimensional evolution problem is solved in the space x, 
z, a, and t on the grid 64×25×40 with relative steps 
Δx =  0.1, Δz =  0.04, Δa =  0.1, and Δt =  0.001$0.01.  
The main difficulty of calculations is joining of the 

variables j and jT when going from the diffusive-
convective regime to the subsonic one, which occurs at 
the surface temperature close to that of water boiling. 

The solutions are constructed in the liquid water 
content approximation considering the function of the 
water droplet size distribution with model radii 
am =  0.5$5 μm (at I0 =  107 W/m2) for the ranges of 
variations of the intensity I0 =  106$108 W/m2 
(am =  2.5 μm) at the pressure p∞ =  0.0756⋅105 Pa (at 
an altitude of 18 km) and the temperature T∞ =  233 K 
(the intervals of particle radii and the range of 
variation of the intensity are marked by the cross in 
Fig. 1 and by the cross in the square in Fig. 2).  The 
individual calculations, performed at an altitude of 
0 km and T∞ =  293 K, are marked by the symbols ⊗ 
and ∅ in Fig. 2. 

The initial liquid water content was identical for 
two approaches w0 =  3.14⋅10$4

 kg/m3 and constant in 
the above-named runs of calculations (the particle 
number density N0 =  108$1013 m$3 with am =  5$
0.5 μm).  The extinction coefficient and the clearing 
and thermal self-action parameters Nbw, Nvw, and NT, 
as well as the quantity βd for the liquid water content 
approximation were calculated at a =  am.  The 
parameter of thermal self-action was small.  So we took 
ρ1 =  0 (thought the code allows one to consider the 
thermal self-refraction), the air flow velocity 
V0 =  1.5 m/s, the beam radius r0 =  0.05 m, and the 
path length L =  20 m.  The diffraction beam 
broadening on such paths is negligible. 

The common regularities of variations of the 
quantities f and β should be pointed out.  The 
maximum of the function f increases and shifts toward 
smaller radii a as the time increases and when the 
observation points moves from the beam edge to the 
beam axis and from the end point of the propagation 
path to its initial point, i.e., for increasing local 
intensity in all cases.  The parameter β sharply 
decreases toward beam edges down to βmin and 
decreases smoother as the time increases and as the 
observation point moves along the beam axis. 

The distributions of the quantities a, f, β, βa, α, 
αa, and αe, the similarity parameters Nb and Nv (as 
well as NT in order to follow the tendency of 
changing), and the output parameters, namely, the 
radiation intensity I and the optical thickness of the 

medium  τ =  ⌡⌠
0

L

 α dz  have been analyzed.  The integral 

(over the water droplet radii) parameters β, Nb, and 
Nv decrease with the increase of time and along the 
path.  The parameter NT increases with the increase of 
z.  The decrease of the water droplet radii is significant 
for the spectrum of particle radii a0 > 2 μm and 
insignificant for small water droplets with a0 < 1 μm. 

The error of the liquid water content 
approximation for the examined ranges of variation of 
the intensity and modal radii is shown in Figs. 3 and 4.  
The beam intensity I and the optical thickness τ as 
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functions of the most probable value of the water 
droplet radius am in the range 0.5$5 μm for the initial 
beam intensity I0 =  107 W/m2 at the moment of 
establishing of the clearing process when t/t0 =  1$2 
(tphys =  0.033$0.0667 s) are shown in Fig. 3a. 

 

 
 

FIG. 3.  Comparison of the intensities I/I0 and 
optical thickness τ observed at the end point of the 
path at z =  L =  20 m in the polydisperse water droplet 
aerosol with the initial liquid water content w0 =  3⋅10$

4 kg/m3 calculated considering the water droplet size 
distribution (the solid curves) and in the liquid water 
content approximation as functions of the modal radius 
am.  The dot$dash curve shows the relative error 
Δτ/τ =  (τ $ τw)/τ in calculating the optical thickness 
τw in the liquid water content approximation.  The air 
temperature was I∞ =  233 K, the characteristic 
radiation intensity was I0 =  107 W/m2 (a).  
Variations of the clearing parameters Nv and Nvw as 
functions of am (b). 

 
The dashed line is for the liquid water content 

approximation, the dot-dash line Δτ/τ =  (τ $ τw)/τ is 
for the relative error of calculation of the optical 
thickness in the liquid water content approximation.  
The values of the extinction parameters are close: 
Nb =  0.741$0.654 and Nbw =  0.728$0.802 for am =  0.5$
5 μm.  The values of the evaporation parameters Nv 
and Nvw (the dashed lines) are shown in Fig. 3b.  For 
am > 2 μm the parameter Nvw is overestimated in the 
liquid water constant approximation.  The aerosol 
clearing occurs practically till the zero optical thickness 
τ, while the more exact solution saturates at the fixed 
nonzero level τ ≅ 0.1.  This is explained by the 
significant decrease of the water droplet evaporation 
efficiency with the decrease of the droplet radii.  The 
clearing process slows down.  The relative error 
⏐Δτ⏐/τ of the calculation of the optical thickness in 
the liquid water content approximation for 

am < 1.5 μm is close to zero and for am > 2.5 μm it 
increases up to 85$95% (partly this is caused by the 
incorrect choice of βd equal to βa(am) for these radii of 
water droplets). 

In the range of the intensity variations I0 =  106$
108 W/m2 (am =  2.5 μm, Fig. 4a), the error of the 
liquid water content approximation ⏐Δτ⏐/τ reaches 
100% for I0 > 2⋅107 W/m2.  For I0 < 5⋅106 W/m2, 
⏐Δτ⏐/τ decreases down to zero.  The liquid water 
content approximation agrees satisfactorily with the 
more exact solution considering the water droplet size 
distribution for am < 1.5 μm (I0 =  107 W/m2) and 
I0 < 5⋅106 W/m2 (am =  2.5 μm). 

 

 
 

FIG. 4.  Dependences of I/I0, τ, and Δτ/τ (see 
Fig. 3a) on the characteristic intensity I0.  The modal 
radius of the water droplets was am =  2.5 μm (a).  The 
clearing parameters Nv and Nvw as functions of I0  
(b). 
 

Our investigations extend the applicability limits 
of the liquid water content approximation from the 
lower limit of the diffusive regime of evaporation 
(pw =  βmin, the solid line in Fig. 1) to a new boundary 
(|Δτ|/τ << 1, the dot-dash line in Fig. 1).  On this 
boundary, the evaporation parameter is significant: 
Nv =  2.2 (am =  1.5 μm, I0 =  107 W/m2) and 1.09 
(I0 =  5⋅106 W/m2, am =  2.5 μm).  The quantitative 
agreement of the evaporation parameters Nv and Nvw in 
the range of small errors of the liquid water content 
approximation and significant discrepancy in the range 
of large errors ⏐Δτ⏐/τ indicate that for the 
polydisperse aerosol the parameter Nv can be used as an 
analog to the parameter Nvw. We note that the 
function w(x, z, t) alone in the liquid water content 
approximation cannot describe a wide variety of the 
spatiotemporal distributions of the extinction, 
absorption, and thermal self-action that enter the 
equation.  The liquid water content approximation 
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overestimates the thickness and depth of the clearing 
channel.  Application of the liquid water content 
approximation in cases in which the knowledge of 
clearing microphysics detail is not critical should be 
accompanied by the test comparison with the more 
exact solution considering the water droplet size 
distribution and the nonlinear dependence between the 
parameters.  Significant discrepancies between two 
solutions for the diffusive-convective and subsonic 
regimes of evaporation under examined conditions point 
to the fact that the applicability of the liquid water 
content approximation should be checked in other cases 
as well, including diffraction beam broadening, thermal 
self-action, variations of initial optical aerosol 
thickness, and so on. 
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