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The problem of choosing the optimal orthonormalized basis functions for the recon-
struction of atmospheric aberrations from measurements is studied. A system of poly-
nomials that makes it possible to decompose the aberrations for annular receiving ap-
ertures is proposed. It is shown that for a circular aperture the error in reproducing the 
wavefront with these polynomials is approximately 10% smaller than that obtained with 
Zernike polynomials. 

 
 

The methods of adaptive optics are used to make 
laser systems operating under conditions of atmos-
pheric distortions more efficient.1 The Measurement of 
the distorted wavefront and subsequent correction of 
the wavefront make it possible to reduce substantially 
the jitter, scintillation, and spreading of optical beams 
and images.2 

To describe the wave distortions of light fields on 
atmospheric paths the light fields are usually expanded 
in modes in a system of basis functions. Theoretically 
the most accurate representation is obtained using the 
Karunen-Love functions, whose expansion coefficients 
are uncorrelated.3 The choice of basis functions for the 
problem of wavefront reconstruction from measure-
ments is discussed in Ref. 4. In practical applications, 
because the Karunen-Love functions are given in a 
tabular form and are difficult to calculate, these 
functions are replaced by orthonormalized polynomi-
als.5 Thus, for example, for circular apertures the 
Zernike polynomials are usually employed. At the same 
time, the use of Zernike polynomials for receiving ap-
ertures of a different form is not always desirable be-
cause the conditions of orthonormality are not satisfied 
and the expansion coefficients are more strongly cor-
related. We shall study the problem of constructing 
basis functions in a class of polynomials for such cases. 

We expand the phase profile (r) of the arriving 
light field in a system of basis functions Gi(r) with the 
expansion coefficients i ( 1,i n ). The quality of the 
optical system in the presence of atmospheric aberra-
tions is described by the Strehl number St:2 
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where A(r) is the modulus of the complex amplitude of 
the light wave and (r) is the residual spatial error of 
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Let 1. n  In this case the expression (1) has a 
simple approximate representation: 
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where 2( )S A r d r   and the parentheses denote a 

scalar product of the enclosed functions with weight 
A(r). From the expression obtained it follows that in 
problems of optimal wavefront reconstruction it is best 
to judge the strength of the residual aberrations ac-
cording to the criterion , i.e., according to the 
weighted scalar square of the functions (r). 

We shall study the question of the choice of the 
optimal orthonormalized basis functions 

Gi(r) 
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 for reconstruction of atmos-

pheric aberrations from measurements. We represent 
the expansion coefficients i ( 1,i n ) as a linear 

superposition of the signals j ( 1, ,j m  m  n) from 

the sensors of the measuring apparatus: 
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where .Bij are constant coefficients, calculated from 
the condition that the average error   be minimized: 
 

 
 

 (3) 
 

In this case the error   is determined by the 
expression 
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where 
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and Cjk are elements of the matrix that is the inverse of 
the matrix with the elements .j k   

By analogy to the procedure used to obtain the 
Karunen-Love functions,3 we determine the functions 
Gi(r) as the eigenfunctions of the integral equation 
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where 2
i  are the eigenvalues. 

It can be shown that in this case the following 
expressions are valid: 
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From Eq. (6) it is not difficult to see that the 
functions Gi(r) will be polynomials if the kernel 
L(r, ) is expanded in a series of spatial polynomials. 
If the measurements j depend linearly on the phase of 
the profile, this is equivalent to polynomial ap-
proximation of the correlation function ( ) ( ) .r    

Thus the problems of optimal approximation of 
atmospheric aberrations and the problems of wave-
front reconstruction from measurements lead to es-
sentially the same equations for the basis functions. 
Only the weighting functions are different. 

We shall study the construction of the basis 
functions in problems of the polynomial expansion of 
atmospheric aberrations on circular and annular re-
ceiving apertures with a uniform distribution of the 
light intensity. We shall also assume that the phase 
distortions are measured perfectly over the entire 
aperture. In this case the expansion coefficients i 

assume the simple form 
1

( , ),i iG
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    and Eq. (6) 

reduces to the following equation:3 
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where  is the region of the aperture with outer di-
ameter D and inner diameter aD; A(r) = 1, r  ; 
A(r) = 0, r  . 

In the expression (8) the spatial correlation 
function ( ) ( )r    has a linear representation in 

terms of the structure function D(r – ):3 
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For the Kolmogorov model of atmospheric turbulence 
D(r) = 6.88(r/r0)

5/3 where r r     and r0 is 
Fried’s correlation radius.5 

We shall obtain the first ten polynomials Gi(r). 
For this we expand D(r) in the following form:6 
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In this case the solutions of the integral equation 
(8) will be circular polynomials:7 
 

 (11) 
 

where q = 0, 1, 2,  and Ckj are constant coefficients. 
For them the integral equation (8) reduces to a 

matrix equation of dimension 4, and in addition all 
integrals can be calculated in terms of analytic func-
tions. The coefficients Ckj obtained are presented in 
Table I. The dependence of the quantities 2

j  on the 

parameter a is studied in Ref. 7. 
 

TABLE I. 
 

 
 

We shall now compare the polynomials obtained 
with other functions employed for describing atmos-
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pheric aberrations on circular receiving apertures 
(a = 0). The radial sections of the polynomials Gj are 
shown in Fig. 1. The true Karunen-Love functions are 
presented in Ref. 3. They are virtually identical to the 
functions Gj (j  10). The calculations showed that 
using the first ten Karunen-Love functions reduces the 
error   by an amount less than 1% of the analogous 
error for Gj. The Zernike polynomials describe atmos-
pheric aberrations less accurately than the functions Gj. 
The ratios of the correlation coefficients i j   for the 

polynomials Gk and the Zernike polynomials Zk 
(k  10), preorthogonalized for annular apertures,7 are 
presented in Table II. One can see from the table that 
the polynomials Gk(r) (k  10) substantially (by an 
order of magnitude) reduce the correlation coefficients 

2 8   and 3 7 ,   and they reduce the average error of 

the approximation by approximately 10%. 
 

 
 

FIG. 1. The radial sections of the polynomials Gj. 
 

TABLE II. 
 

 
 

In order to reduce further the quantities 2 8   

and 3 7  and to increase the accuracy of the ex-

pansion additional terms must be included in the 
expression (10)6. There are no fundamental diffi-
culties in doing this. 
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