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Visible solar radiation transfer in inhomogeneous stratus clouds is considered. 
We propose a model of stratus clouds which allows us to treat fluctuations of both 
the extinction coefficient (liquid water content) and the upper cloud boundary 
height. Influence of stochastic geometry of the upper boundary and the 
inhomogeneous internal cloud structure on one-dimensional probability density, 
mean value, variance, and energy spectrum of albedo, transmittance, and their sum 
is discussed. It is shown that the effects associated with interacting radiative 
fields within spatial pixels result in violation of an one-to-one correspondence 
between the optical and radiative characteristics of individual pixel. These effects, 
resulting in certain specific features in the formation of albedo and transmittance 
statistics, should be accounted for when developing radiation codes of General 
Circulation Models and when interpreting the data of field measurements in real 
clouds. 

 
1. INTRODUCTION 

 
A highly important topic of recent concern has 

been the study of the relationship between the 
statistical parameters of optical and radiative 
characteristics of inhomogeneous stratus clouds. Such 
an importance is not only because this relationship 
can be used to derive geophysical information (cloud 
spatial structure, incloud turbulence, etc.), but also 
because there is a need for improvements of the 
radiation codes of the general circulation models 
(GCMs). 

A cascade model has been created in the Goddard 
Space Flight Center (GSFC) to treat stratocumulus 
clouds with a simplest geometry (plane-parallel 
layer) and horizontal fluctuations of the liquid water 
path (optical thickness). These fluctuations have been 
modeled using a one-dimensional lognormal 
distribution and a power-law spectrum.1 It was shown 
that the area-average albedo essentially depends on 
the spatial distribution of the optical thickness.2 

In fact, stratus clouds have a very odd and 
irregular upper boundaries. Thus, a question arises 
how strong is influence of stochastic geometry of 
clouds on one-dimensional probability density, mean 
value, variance, and energy spectrum of cloud albedo 
and transmittance for visible solar radiation. In this 
paper we are trying to address this question using the 
GSFC model extended to allow for the random 
behavior of the upper boundary of a cloud layer. 

 

2. CLOUD MODEL 
 
At present no data on simultaneous measurements of 

the distributions of cloud liquid water and height of the 
cloud upper boundary can be found in the literature, so 
the relationship between microphysical and geometrical 
cloud characteristics has not been experimentally 
justified. For this reason, we have assumed that the cloud 
liquid water path and the height of the cloud upper 
boundary are independent random fields. 

The statistical characteristics describing fluctuations 
of the upper boundary are obtained from laser sensing of 
stratus clouds over Barents and Norwegian seas in 
October-November 1987 (Ref. 3). Examples of 1-D 
probability density and correlation function for a single 
observation of cloud field cross-section are presented in 
Fig. 1. This demonstrates that, to a rough approximation, 
the section of the stratus cloud upper boundary can be 
modeled by Gaussian process with the exponential 
correlation function. The correlation radius as determined 
at e–1 level is 2.5–3.5 km. With the limited experimental 
data, the approximation cannot be improved, and the 
stratus cloud upper boundary isotropy and homogeneity 
cannot be justified. So we will model the stratus upper 
boundary approximately, by homogeneous isotropic 
Gaussian field with the exponential correlation function. 

Below we use the following abbreviation for 
simplicity: 

LWP model describes fluctuations of the liquid 
water path (optical thickness) in a plane-parallel cloud 
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layer. The LWP fluctuations obey a one-dimensional 
lognormal distribution and have power-law spectrum; 

CUB model describes the fluctuations of the 
cloud layer upper boundary. The CUB fluctuations 
are assumed to be a Gaussian process with the 
exponential correlation function; 

LC model is a superposition of the LWP and CUB 
models and describes fluctuations of both the liquid 
water content (extinction coefficient) and the cloud 
upper boundary. 

Designations used for statistical characteristics of 
the optical depth (τ), albedo (R), transmittance (Q), 
etc., include subscripts (for a model), overbar (for the 
area average), and symbol Var (for the variance); e.g., 
RLWP and Var RLWP denote the area-average and the 
variance of albedo in LWP model. 

For simplicity and for saving computer time, we 
consider one-dimensional models, that is those in which 
the optical depth, albedo and transmittance are random 
processes. Algorithm of simulating LWP, CUB, and LC 
realizations is based on the method of "spectrum 
randomization"4,5 which involves the following steps. 

1) LWP model. Plane-parallel layer with the 
thickness ΔH = 0.3 km and length L = dx⋅N = 204.8 km is 
divided into N = 212 pixels (cells) of the same horizontal 
size dx = 0.05 km. For each pixel, we simulate the optical 
thickness τLWP using a one-dimensional lognormal 
distribution (τLWP = 13, Var τLWP = 25.1) and a power-
law spectrum (with the exponent β�= 5/3). Each pixel 
is then assigned the extinction coefficient 
σ(i) = τLWP(i)/ΔH, i = 1, N. 

2) CUB model. Height of the upper boundary, 
H(i), i = 1, N, is simulated with a one-dimensional 
Gaussian distribution (H = 0.3 km, 
Var H = 0.01 km2) and exponential correlation 
function (correlation radius 2.5 km). The optical 
thickness of each pixel is given by 

τCUB(i) = H(i)⋅ τ$LWP/ΔH, i = 1, N. 
3) LC model. Each pixel has the extinction 

coefficient σ(i), thickness H(i), and optical thickness 

τ$LC(i) = τ(i)⋅H(i), i = 1, N. Owing to the 

independence of the random processes considered, τ$

LC = τ$LWP = 13. 
 

 

      
a     b 

FIG. 1. One-dimensional probability density (a) and correlation function (b) of the height of the cloud upper 
boundary. Measurements (dashed lines) and approximation (solid lines) by Gaussian distribution function (a) and 
exponential correlation function K = exp(–x/3.5) (b). 

 

 
a     b 

FIG. 2. Probability density (a) and energy spectrum (b) of the optical depth for different cloud models. 
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Examples of the one-dimensional distributions and 
energy spectra of optical depth are presented in Fig. 2. 
Noteworthy, the distribution mode in LC model is 
shifted toward smaller optical thicknesses and is about 
30% smaller, while the distribution itself is broader 
(Var τLC ≈ 2 Var τLWP) (see Fig. 2a and Table I). 
Figure 2b is a log plot of the energy spectrum of optical 
thickness, E(τ, k), as a function of the bin number, k, 
which is related to the spatial frequency fk as 
fk = k/L = k/(dx⋅Ν), where L is the length of the 
realization processed. In the spatial frequency range 
under consideration, the energy spectrum E(τCUB, k) 
has nearly smooth (on a log plot) section, which can be 

approximated by E(τCUB, k) ∼ k
–βCUB, with 

βCUB = 1.9; that is, βCUB > βLWP and E(τCUB, k) falls 
off faster than E(τLWP, k). Since the variance of τLWP 
is 1.5 times larger than that of τCUB, the energy 
spectrum E(τLC, k) only slightly differs from 
E(τLWP, k). 
 
TABLE I. Variances, minimum (Min), maximum 
(Max), and mean values of the optical depth (τ), 
albedo (R), transmittance (Q), and their sum (R+Q), 
corresponding to the LC and LWP cloud models. 
Values in parentheses refer to the radiative 
characteristics obtained with Var τLWP = 47.3. 

 

Parameter Model Min Max Mean Variance

τ LC 0.45 60.30 13.08 47.30 
 LWP 3.06 44.90 13.03 25.10 

R LC 0.179 0.784 0.478 0.012 
 LWP 0.241 

(0.175) 
0.762 

(0.828) 
0.492 

(0.477) 
0.007 

(0.012)
Q LC 0.177 1.039 0.522 0.022 
 LWP 0.219 

(0.161) 
0.966 

(1.112) 
0.508 

(0.523) 
0.011 

(0.019)
R + Q LC 0.796 1.338 1.0 0.005 

 LWP 0.887 1.224 1.0 0.001 
 

3. ALBEDO AND TRANSMITTANCE 
 
Albedo and transmittance are computed for each 

pixel by Monte Carlo method, employing, in particular, 
the Maximum Cross Section Method.6 The calculations 
have been made for the overhead sun and Heneye-
Greenstein scattering phase function with the 
asymmetry parameter of 0.843. Impacts of the 
underlying surface and aerosol atmosphere have not 
been accounted for. In order to evaluate the extreme 
possible impact of the cloud top stochasticity on the 
solar radiation transfer in the inhomogeneous stratus 
clouds, RLC and QLC were calculated with Var H = 

= (H
$

/3)2 = 0.01 km2. Minimum and maximum (Hmax) 
cloud top heights were, respectively, 0.014 and 
0.646 km. The transmittances QLWP and QLC are 
calculated at the level of the cloud lower boundary 
(plane z = 0). Most of RLWP computations refer to the 
altitude z = ΔH, while RLC is computed at the 

maximum level of the cloud upper boundary (plane 
z = Hmax); untill otherwise is noted in figure captions 
(see e.g., Figs. 7a,b). The relative computation error 
was within 1%.  

Below we present the calculational results which 
illustrate the influence of stochastic geometry of  
stratus cloud upper boundary, upon the statistical 
characteristics of albedo and transmittance. Note that 
these effects, completely missing in LWP model, are 
most important for cumulus clouds and are thoroughly 
discussed in Refs. 7–9. 

Examples of the realizations of optical depth, 
albedo, transmittance, and their sum R + Q are given 
in Fig. 3, from which we see that maximum (minimum) 
pixel optical depth is larger (lower) in LC than in 
LWP model. This might explain the increase (decrease) 
of the maximum (minimum) values of albedo, 
transmittance, and their sum in the stratus clouds with 
random upper boundary. 

For pixels nearly as tall as wide or taller, the 
radiation interaction associated with the horizontal 
photon transport substantially affects albedo and 
transmittance. These latter depend on optical properties 
of an ensemble of pixels, rather than on parameters of a 
single pixel. For example, pixels of the same optical 
thicknesses (Fig. 3a, points A and B) possess different 
albedo values (Fig. 3b, points C and D). 

Multiple scattering tends to smooth the radiation 
fields, so that albedo has a more uniform spatial 
distribution than the optical depth (Fig. 3a, b). In LC 
model the albedo of each pixel is calculated in the 
plane z = Hmax. Radiative field reflected by a pixel 
with H < Hmax spreads in the space before reaching the 
plane z = Hmax to give albedo. In addition, it overlaps 
with neighboring pixels' radiative fields. Both these 
effects further smooth the reflected solar radiation 
fields, so that RLC(x) does not reproduce essential 
details in τLC(x) pattern. In contrast, transmittance is 
calculated at the cloud base being the same for all 
pixels; thus the spread and overlap effects do not work 
now. This circumstance, as well as the strong forward 
peak of the scattering phase function and the 
contribution from direct solar radiation, leads to 
transmittance being more sensitive to spatial variability 
of the optical depth than albedo (Figs. 3a,b,c). 

Cloud top is illuminated by a parallel unit solar 
flux (homogeneous boundary conditions), thus for 
each pixel in horizontally homogeneous clouds the 
balance of radiant energy holds, which for the 
conservative scattering case assumes that R + Q = 1. 
Unlike, in the horizontally inhomogeneous clouds, 
the radiant energy balance holds on the average, 
while R + Q in an individual pixel may substantially 
differ from unity (Fig. 3d). We see that certain 
relationships from classic radiative transfer theory 
may break down in inhomogeneous cloud systems that 
should be kept in mind when interpreting data on 
real clouds. In our opinion, the theory of radiative 
transfer in horizontally inhomogeneous clouds and, in 
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particular, the effect of local deviation of radiant energy 
balance from unity is of a key importance for 
understanding of the cloud absorption anomaly what is 
intensively debated among the scientific community 
now.10,11 

The account for random upper boundary changes a 
little bit the mean albedo and transmittance, while 
almost doubling their variances (Table I) and appreciably 
affecting the probability densities (Fig. 4). Obviously, 
the cause of the differences is in the fact that 
Var τLWP < Var τLC. Computational results for albedo 
and transmittance in the LWP model with 
Var τLWP = Var τLC are given in Table I (in parentheses) 
and show that, at fixed mean value and variance of 
optical depth, the mean and the variance of albedo and 
transmittance depend only a little on the cloud model. 
The probability density of RLC, unlike that of RLWP, is 
distinctly bimodal (Fig. 4a). 

The shape of the probability density of R + Q 
 

essentially differs from δ-function, which represents 
the probability density in the case of horizontally 
homogeneous clouds (Fig. 5a). In order to quantify 
the contributions from optically thin and thick pixels 
to the R + Q values higher (lower) than unity, all 
the R + Q sums calculated in LC model were divided 
into two arrays, one with (R + Q)s from thinner than 
mean pixels (τ < 13), and another from those with 
τ > 13. The resulting arrays were then statistically 
processed to evaluate the contribution from each of 
them to the probability density. The results are 
presented in Fig. 5b. The radiation incident upon the 
optically denser (τ > 13) pixels slides down to the 
optically thinner ones. The former, relatively stronger 
reflecting pixels often possess lower radiant energy 
(R + Q < 1), while the latter (τ ≤ 13), normally 
gaining radiation from the adjacent, optically denser 
pixels and capable of transmitting much of the solar 
flux, possess excessive radiant energy (R + Q > 1). 
 

 
FIG. 3. Examples of realizations of optical depth (a), albedo (b), transmittance (c), and albedo plus 
transmittance (d). LC model (solid lines) and LWP model (dashed lines). 
 

    
a    b 

FIG. 4. Probability densities of albedo (a) and transmittance (b): Var τLWP = 25.1 (1) and Var τLWP = 
= Var τLC = 47.3 (2). 
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FIG. 5. Probability density of albedo plus transmittance (a) and the components of the probability density of 
RLC + QLC (b): (a) RLC + QLC (solid), RLWP + QLWP (dashed); (b): probability density of RLC + QLC (1) and 
its components due to pixels with optical thicknesses τ�< 13 (2) and τ�> 13 (3). 

 
a    b 

FIG. 6. Energy spectra of albedo (a) and transmittance (b) for LC and LWP models. 

 
Energy spectrum of the optical depth varies a little 

between those for LWP and LC models (Fig. 2b), 
whereas the energy spectra of RLWP and RLC 
substantially differ (Fig. 6a). The overlap and spread 
effects smoothen the radiation fields reflected by 
individual pixels so that the slope of the energy 
spectrum of RLC is larger (larger correlation length) 
than that of RLWP. There can occur the scaling break 
in the energy spectra of reflected intensity12 and 
albedo13 at spatial scales on the order of several 
hundred meters. Our results confirm this fact and show 
that the energy spectrum of transmittance is broken as 
well (Fig. 6b). The explanation is that the multiple 
scattering effectively smoothens the radiative field at 
spatial scales on the order of ten photon mean-free 
paths. For the given model parameters, an appreciable 
contribution to QLC may come from direct radiation, 
whose spatial distribution follows that of  
 

τLC. Owing to the strong forward peak of the 
scattering phase function, the transmitted radiation 
field is smoothened by multiple scattering to a lower 
degree than the reflected field. All pixels have the 
same base height at which the transmittance is 
calculated. For these reasons the spatial spectra 
E(RLC, k) and E(QLC, k) substantially differ from 
each other. 

It very hard in practice to perform airborne 
albedo measurements exactly at a maximum  
height of the cloud upper boundary, Hmax. So,  
let an aircraft fly at a height HR above the plane 
z = Hmax. As HR increases, the spread and overlap 
effects of the reflected radiation fields increasingly 
smoothen the spatial distribution of albedo, so that  
its small scale fluctuations vanish (Fig. 7a,b)  
and its probability density contracts in shape 
(Fig. 7c,d). 

 



1033 Atmos. Oceanic Opt. /December 1995/ Vol. 8, No. 12 G.A. Titov and E.I. Kas’yanov 
 

 
FIG. 7. Examples of albedos RLWP (a) and RLC (b) for different heights HR (plane z = HR) and the dependence 
of the probability density of albedo RLWP (c) and RLC (d) on the height HR. The height HR is measured from the 
level z = Hmax (z = HR = 0 corresponds to z = Hmax). 
 

4. CONCLUSION 
 
The calculational results show that, at fixed mean 

value and variance of the optical depth, the mean value 
and variance of the albedo and transmittance depend 
weakly, while the probability density and energy 
spectrum of albedo depend strongly, on the effects 
associated with the stochastic geometry of the upper 
boundary of inhomogeneous stratus clouds. 

The radiative field is effectively smoothened by 
multiple scattering at the spatial scales on the order of 
ten photon mean-free paths, so that scaling break in 
energy spectra of albedo and transmittance can occur at 
spatial frequencies corresponding to the inhomogeneities 
on the order of several hundred meters in size.  

Because of the spread and overlap of radiation 
fields of individual pixels, the albedo (transmittance) 
statistics essentially depends on the distance between 
the receiver and the upper (lower) cloud boundary. 

There is a strong horizontal variability of albedo 
and transmittance in inhomogeneous stratus clouds, so 
that the radiant energy balance holds on the average, 
for the entire realization, but may break down for each 
individual pixel. Addition of stochastic upper boundary 

amplifies the horizontal variability of the albedo and 
transmittance. 
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