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A problem of wavefront measurement has been studied from the viewpoint of the 
linear systems theory. The transfer function of the measuring device is given. Formulas 
for estimating the measurement error and the optimal parameters of the measuring device 
have been derived. 

 
 

Wavefront measurement In the study of various 
physical processes and quality control technical ob-
jects is an urgent problem. Recently there has been an 
increase in interest in wavefront measuring devices  
in conjunction, with the development of wavefront 
control systems.1 In practice the measured wavefront 
deviates from the actual one. This is caused by the 
nonideal character of the measuring device, noise 
associated with the small-scale component of the 
wavefront in linear adaptive systems which compen-
sate for the low-frequency wavefront component, etc. 

It was previously noted2 that the diaphragm 
(screen) used in the measurements in the Hartmann 
method acts as a filter of the wavefront spatial fre-
quencies. Let us now consider the problem of opti-
mization of the measurement process within the 
framework of the above-indicated approach. 

Let the difference () between the actual and 
measured values of the phase be represented in the form3 
 

 
 
where S() and () are the spatial Fourier spectra of 
actual wavefront S() and additive noise wavefront 
(),  = r/R, r is the radius vector of a point on the 
wavefront, R is the beam radius, and K() is the 
transfer function of the wavefront measuring device. 
Let S() and () be statistically uncorrelated random 

fields with zeros expectations ( )S   and ( )   (the bar 
above the symbol denotes statistical averaging) and 
spectral power densities Gs() and G(), respectively. 
The formula for the rms measurement error is obtained 
by squaring and subsequent statistical averaging 
 

 (1) 
 
The Hartmann method makes it possible to measure 
local wavefront tilts. In this case we are interested in 
the mean square wavefront tilt 
 

 
 

where P is the beam area expressed as a function of . 
An expression for g2 can be obtained from the formula 
for  by differentiation 
 

 (2) 
 

The Wiener—Hopf theorem identifies the optimal 
transfer function which minimizes the error as 
 

 (3) 
 

In practice the function given by Eq. (3) is ap-
proximated by realizable functions with the goal of 
constructing a quasioptimal filter. 

Let us now consider the transfer function of a real 
wavefront measuring device. In measuring with the 
Hartmann sensor the information about the phase (more 
correctly, about the local wavefront tilt) is attributed to 
a small but finite element of the area from which the 
energy necessary for the measurement is collected. 
Employing the spectral representation of the wavefront 
it is not difficult to derive the following expression for 
the transfer function of the measuring device: 
 

 
 

where F() is the transmission function of the aver-
aging aperture (hole). For a circular aperture with 
radius r0  
 

 (4) 
 

Íåãå 0 = r0/R and J1 is the first-order Bessel 
function.5 

Formulas (1) and (2) make it possible to estimate 
the measurement error on the basis of known statistics 
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of the signal and noise. With proper choice of the size 
of the averaging aperture 0 the transmission function 
(4) can be made to approach the optimal one. If the 
size of the averaging aperture is fixed, we can con-
struct a quasioptimal transfer function with the help of 
an additional spatial filter,4 a diagram of which is 
shown in Fig. 1. The lens 2 is used for the Fourier 
transform of the wavefront, which is measured in the 
plane 1. The lens 4 performs the Fourier transform for 
the spatial frequencies transmitted by the filter 3. The 
filter shown in Fig. 1 is characterized by the following 
transmission function for small phase aberrations:  
 

 (5) 
 

where w = kRr/f, k is the wave number, r is the 
radius vector of a point on the diaphragm 3, P1 is the 
set of points making up the circular hole in the dia-
phragm 3. The system "filter-Hartmann sensor" has 
the transmission function K0 (w)K1(w). 
 

 
 

FIG. 1. Filtration diaphragm: f is the focal 
length of lenses 2 and 4; 1 is the wavefront being 
measured, and 3 is the spatial filter. 

 

Let us now study an example of the choice of the 
optimal parameters for the wavefront measuring de-
vice. Let the signal have the spectral power density 
 

 (6) 
 

where CS = RS/R is the correlation length of the 
signal scaled by the beam radius and s is the phase 
variance. We shall assume that the spectral power 
density of the noise is analogous to expression (6) with 
correlation length C and variance 

2
. In the case of a 

circular hole in the diaphragm 3 in Fig. 1, on the basis 
of formula (2) we obtain for the rms measurement error 
of the local wavefront tilts 
 

 
 

 (7) 
 

 
 

where r1 is the radius of the diaphragm 3 shown  
in Fig. 1. 

The analogous expression for the transfer function 
(4) has the form 
 

 
 

 (8) 
 

 
 

where I1 is the modified Bessel function5 (of imaginary 
argument). 

Expression (7) exhibits a minimum at the point 
 

 (9) 
 

which exists if Gs/G > 1 and  /s > G/Gs. The 
optimal radius r of the diaphragm 3 (Fig. 1) is equal to 
fwopt/kR. The optimal size of the aperture for the 
transfer function (4) can be found by means of an 
analysis of the dependence (8) or it can be estimated by 
approximating the transfer function (4) with the 
function (5). The optimal transfer function scaled to 1 
is plotted in Fig. 2 (curve 1) as a function of the 
spatial frequency for Gs = 2 åõð(—2 2) and 
G = exp(–2). The dashed line corresponds to ex-
pression (9) for wopt and curve 2 represents the transfer 
function (4) at 0 = 2.26/opt. 
 

 
 

FIG. 2. Transfer functions vs spatial frequency. 
1) for the optimal frequency and 2) the Hartmann 
sensor. 

 

Two questions are associated with 1 – the 
spatial transmission frequency of the sensor. First, if 
the discrete signal is obtained with the help of a 
measuring device, then according to the Kotel’nikov 
theorem in order that the reconstruction of the con-
tinuous function be unique the sampling interval must 
satisfy the inequality d < 1/21. Second, the number 
of modes in the representation of the wavefront by a 
finite series depends on 1. This dependence can be 
estimated in the simplest manner using, as an example, 
the Fourier expansion. The maximum spatial fre-
quency for a series of N2 functions (sines and cosines) 
must be of the order of the half-width of the wavefront 
spectrum 1, i.e., N  21/. These estimates make it 
possible to minimize the measurement error at the 
stage at which the wavefront is reconstructed. 

The description that has been developed here of 
wavefront measurement with the help of the Hart-
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mann sensor as a process of spatial frequency filtration 
makes it possible to estimate the measurement error 
and to optimize the basic parameters of the measuring 
device. The results can also be applied to the solution 
of problems of wavefront reconstruction and control. 
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