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A method is proposed for construction of spatial randomly inhomogeneous fields 

of the refractive index of the turbulent atmosphere. The problem of broadening and 
random jitter of a low–power beam is solved by way of example to show that energy 
parameters of the beam can be predicted with satisfactory accuracy without lengthy 
computations.  

 
The problem of compensating for nonlinear and 

turbulent distortions of light beams propagating through the 
atmosphere is of great interest. The possibilities of 
analytical solution of problems of nonlinear statistical optics 
are relatively limited because of the limitations imposed on 
the statistics of the field of the refractive index, on the 
level of its fluctuations, and on the intensity of radiation. 
For this reason the requirements for the reliability of 
predicting the statistics of energy parameters of the light 
field in the image plane are stringent at present. In its turn, 
the adequacy of description of atmospheric inhomogeneities 
at the nodes of computational grid is largely determined by 
the model being used. We propose an update model 
applicable for wider spectrum of inhomogeneities including 
the low–frequency domain.  

 
SPECTRAL MODELLING OF ATMOSPHERIC 

INHOMOGENEITIES  

 
Propagation of the light beam through the randomly 

inhomogeneous nonlinear medium is described by a system 
of equations  
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where ε
~
 are the natural fluctuations of dielectric constant of 

the medium with spectral density Φ
ε = Φ

ε (κ), R
0 

is the 

nonlinearity parameter which depends on the average 

velocity of the medium, and 
~
V is the random field of 

velocities. The principal technique used to solve such 
problems is numerical analysis, which opens the possibility 
to study the solution in the range of variations of 
parameters unavailable for analytical techniques. 

Application of numerical techniques for the solution of 
differential equations implies that continuous fields are 
substituted by their discrete analog prescribed at the nodes 
of the computational grid. The available computer power 
limits the number of nodes of the grid and the 
corresponding size of computational grid L in general. 
Spatial and spectral discretization of the variables imposes 

limitations on the modeled physical fields E and ε
~
.  

The most significant difficulty in modeling the field of 
dielectric constant is associated with the wide rauge of size 
spectrum of the atmospheric inhomogeneities in the turbulent  

atmosphere. The smallest characteristic scale of change of 

spectral density of fluctuations is κ
0 

= 
2π

L
. The harmonics in a 

discrete spectrum are spaced out at 2π/L, where L is the size 
of the domain in which the field is modeled. At least several 
harmonics are required to reproduce the change of spectrum 
with the scale κ

0
. In the low–frequency domain this limitation 

results in a simulation of field with a smaller actual external 
scale at the nodes of the grid. The dependence of the effective 
outer scale L

eff
 reproduced at the nodes of the grid in the 

low–frequency domain on the number of nodes of the grid M 
and on the ratio L/a

0
 calculated by the method of numerical 

simulation based on the variance of the displacements of the 
beam center of gravity, is a good illustration of this limitation 
in the low–frequency domain (see Fig. 1).  

 

 
 

FIG. 1. Effective outer scale of turbulence as functions of 
the number of the nodes of computational grid and of the 
ratio L/a0 . 

 
In the high–frequency domain the limitation imposed 

on the spatial spectrum can be estimated assuming that the 

modeled spectrum ΦM
ε
(κ) of fluctuations ε

~
 is truncated at 

the Nyquist frequency of the computational grid, i.e., at 
κ
N
 = π/Δx, so that  
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Let us consider the variance of fluctuations of the level 

of a plane wave σ2
x. For the modified Kolmogorov spectrum 

of turbulent fluctuations we have1  
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where γ(α, β) is the incomplete gamma-function. The effect of 
the finite frequency band is determined by the factor μ. For 
κ
N/

κ
M ≥ 2 we have μ g 0.98. Hence, making use of the relation 

κ
M = 5.92/l

0
, we find l

0/
Δx ≥ 4. Thus the reproducible 

spectral range in the high–frequency domain is also limited 
and amounts to approximately half the Nyquist frequency. 

 
MODAL REPRESENTATION OF ATMOSPHERIC 

INHOMOGENEITIES 

 
Below we propose an efficient technique for 

construction of the random fields based on modal 
representation of atmospheric inhomogeneities. This 
representation may be constructed most accurately using the 
Karuhnen-–Loeve functions, which have uncorellated 
coefficients in their expansion. However, the tabulated form 
of these functions as well as difficulties of their calculation 
result in the fact that they are usually substituted by 
normalized Zernike polynomials.  

To model random phase perturbation ψ
~
(r, ϑ) on the 

section of the path Δz, we use its expansion in a system of 
the polynomials Zj(ρ, ϑ) within given aperture of radius R:  

 

ψ
~
(ρ, ϑ) = ∑

j=0

∞

αj Zj(ρ, ϑ) ,  ρ = r/R,  

 

where the random coefficients α
~

j are assumed to be normally 

distributed with zero mean and variance determined by 
atmospheric conditions on the path. For the Kolmogorov 

spectrum of turbulent fluctuations the values α
~
j are related to 

the structure constant of the refractive index fluctuations C2
n 

in terms of the Fried's correlation radius of phase fluctuations 
r
0
 (see Ref. 2)  
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where r
0 
= 1.68(C2

nκ
2Δz)–3/5 and aj are the weighting 

factors.  
To find the radius of the aperture R in the expansion 

we naturally assume that it is sufficient to restict ourselves 
to the first few polynomials (j = 2, 3) in the expansion of 
phase to describe random jitter of the beam. Then  

 

ψ
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~
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The variances of the random numbers α
~

2
 and α

~
3
 are 

given by the relation: 
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Let the light beam successively pass N equidistantly 
spaced statistically independent phase screens located on the 
path. According to Eq. (1), the random tilt of the wavefront 

at the ith screen is equal to βi = 2α
~(i)

2
/κR. Its average value is  

<βi> = 0 and its variance is <β2
i> = 

4<α2
2
>

κ2R2  . For homogeneous 

turbulence the variance of the tilt can be represented in the 

form <β2
i> = A 

z
N , where A = 5.35a2

2
C2

n
R

–1/3
 is the constant 

independent of either spacing or the number of screens.  
The displacement ρN in the plane NΔz is  
 

ρN = Δz(β
1 
+ (β

1 
+ β

2
) + ... + (β
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and its rms deviation is  
 

σ2 = Az3SN, where SN = 
1

N3 + 
22

N3 + ... + 
N2

N3 .  

 

As N → ∞, which corresponds to the continuously 

stratified turbulent medium, SN = 
1
3 or  

 

σ2 = 
Δz3

3 A. (2) 

 

Comparing Eq. (2) with the relation for the variance 
of the displacement of the beam center of gravity obtained 
in Ref. 4 for the Kolmogorov spectrum of turbulent 
fluctuations, we can find that R

0 
= a

0
/2. 

 
RESULTS OF NUMERICAL SIMULATION  

 

The proposed model was applied for the solution of the 
problem of broadening and random jitter of the beam in the 
propagating through the turbulent atmosphere. Results of 
calculations are shown in Fig. 2.  

 

 
 

FIG. 2. Turbulent broadening as a of function the structural 
phase function of the spherical wave: 1) analytical estimate 
and 2) method of numerical simulation.  

 

Here Δ2
T = a 2

eff
 – a2

d, where a 2
eff

 is the squared effective 

beamwidth and a2
d is the squared diffraction width of the 

collimated beam. The relative turbulent broadening is shown 
as a function of the parameter DS(2a) which characterizes the 

atmospheric turbulence on the path. The deviation of the 
results of numerical experiments can be explained by the fact 
that modeling the random field of the refractive index based 
on the modal representation, we consider only the first 5 terms 
of the expansion.  

Thus, the model is proposed for construction of the 
spatial randomly inhomogeneous fields of the refractive index 
of the turbulent atmosphere, which makes it possible to 
significantly expand their spectrum toward the low–frequency 
domain. Its realization is reduced to choosing a random set of 
numbers with prescribed correlation coefficient instead of 
modeling the random field with a prescribed correlation 
function over the entire range, so that we can significantly 
reduce the volume of computation.  
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