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The equation of radiation transfer for a flat layer of vegetationis studied. Two forms 
of this equation are presented: an integrodifferential equation and an integral equation 
of the second kind. An algorithm for solving the integral equation by the Monte Carlo 
method is described. The advantages of this algorithm and the prospects for using it in the 
solution of direct and inverse problems are pointed out. 

 
 

1. INTRODUCTION 
 

In the last few years the rapid development of 
aerospace sounding of vegetation has made it necessary 
to develop different models of the interaction of 
sunlight with a plant canopy (PC). There exist 
different models of the radiation regime of PC: 
geometric models, models of a turbid medium, mixed 
models, and statistical models. 

The model proposed below is a combination of 
turbid-medium and statistical models. Great 
computational difficulties arise when vertical and 
horizontal nonuniformities, the row arrangement of 
the plantings, and the dimension of the phytoelements 
are included in the turbid-medium model. In the 
statistical model, on the other hand, the geometric 
factors are taken into account in a natural manner. 
However, statistical models of the type employed in 
Ref. 4, are difficult to use to estimate the geometric 
parameters of a separate plant and the crop as a whole 
because of the impossibility of calculating the 
derivatives of the photon trajectories with respect to 
these parameters.1 

In this paper we propose a description of the 
radiation regime of PC with the help of the transfer 
equation (including in it all important geometric 
parameters), which we solve with the help of the 
Monte-Carlo method. The procedure developed makes 
it possible to extend the technique of solving the direct 
and inverse problems in atmospheric physics by the 
Monte-Carlo method2 to vegetation. 

To simplify the presentation, we shall confine our 
attention to uniform PC. In the first two sections we 
describe the integrodifferential equation describing 
radiation transfer in a foliated medium and the transfer 
to an integral equation. The next two sections are 
devoted to the solution of this equation by the 
Monte-Carlo method. Then, we include in our model 
the sizes of the plants in order to take into account the 
effect of reflection. 
 

2. THE EQUATION OF TRANSFER IN PLANT 
CANOPIES 

 
We shall study a plane-parallel, uniform, lamellar 

medium with thickness H, whose- top boundary is 
illuminated by direct sunlight and whose bottom 
boundary is a lambertian reflecting surface with 
albedo rs. The process of radiation transfer in such a 
medium is described by the boundary-value problem 
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where G() is the average projection of the normals of 
the lamella on the direction , i.e., 
 

 (2) 
 

where L L

1
( )

2
g 


 is the probability distribution of the 

normals of the lamella (here and below the factors 4 
and 2, appearing in the integrand, denote the entire 
unit sphere and its upper and lower hemispheres, 
respectively). The angles  and  (cos = ) are the 
azimuthal angle of the unit vector  = (, ) 
relative to the outward normal, directed along the 
negative z-axis. The vector 0 = (0, 0) is the 
direction of the sunlight, whose intensity is I0, and the 
function / is the unnormalized scattering phase 
function of an elementary volume: 
 

(3) 
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where f is the reflection phase function of the surface 
of a leaf. If the leaf albedo is denoted as L, i.e., 
 

 (4) 
 

then the function 
 

 (5) 
 
is the scattering phase function normalized to the leaf 
albedo 
 

 (6) 
 

3. THE INTEGRAL TRANSFER EQUATION 
 

We denote 
 

 (7) 
 

The integrodifferential equation (1) for the function 
I(, 


), can be reduced in the standard manner to an 

integral equation for the function, J(, 


). Omitting 
the intermediate calculations, we write out this 
integral equation: 
 

 
 

 (8) 
 
where 
 

 (9) 
 

and x = (, 


) is a point in the phase space X.  
Here 
 

 = 
 

=

 
 
 (10) 
 

 = 
 

= 

 
 
 (11) 
 

and the function F(, 


) is 
 

 (12) 
 
We note that the integral equation (8) can also be 
derived directly from physical considerations. 
 
4. SOLUTION OF THE INTEGRAL EQUATION 

BY THE MONTE CARLO-METHOD 
 

We write the integral equation (8) in the operator 
form 
 

 (13) 
 
where the kernel of the integral operator K, is defined 
in Eqs. (9)–(11). We shall give the probability 
interpretation of this equation. The kernel k(x  x) 
is the probability distribution of collisions at the point 
x in the phase space under the condition that the 
preceding collision occurred at the point x. Here, 
x = (, 


), where  is the depth of the collision point 

and 


 is the direction of motion of the photon 
immediately prior to the collision; J(, 


) is the 

phase density of the collisions; F(, 


)/|  | is the 
density of the first collisions of the photons emanating 
from the source with the radiation density I(0, 


) in 

the direction 


. 
It is well known that if 1,K   then Eq. (13) 

has a unique solution, which can be written in the form 
of a Neumann series 
 

 (14) 
 

It is often sufficient to find not the entire 
solution, but rather only some functional of it. For 
example, to calculate the spectral brightness 
coefficient (SBC) we need to know J(0, 


* ), 

    
 
* ( *, *),   > 0, i.e., the reflection from the 

top surface in the direction 


* . Then 
 

 
 
where x*  is the Dirac delta-function and 

x* = (0, 


* ). Substituting Eq. (14), the last 
equation can be put into the form 
 

 
 

 
 
We took into account the fact that (F, x* ) = 0, 
because the sunlight and the reflected radiation are 
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oppositely directed. The operator K* is the operator 
conjugate to K, namely, 
 

 
 
From here we have 
 

 
 
Denoting the right side of the last equation by 
(, 


) G(


* ) we obtain 

 


   
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 (15) 
 
where the contribution function 
 

 (16) 
 

Here 


*  is the direction of observation, and the 
observation point is located on the top boundary of the 
medium; P(  

 
* ) is calculated from the formulas 

(2), (3), and (4). 
In the case of reflection from an underlying 

lambertian surface 
 

 
 

The i-th term in Eq. (15) is the contribution of 
photons from the i-th collisions to the SBC. The 
expansion (15) corresponds to the Monte-Carlo 
algorithm for calculating the spectral brightness 
coefficient, namely, the photon trajectories 

n
0x  n

1x   ….  n
m,x  where n

1x  are the collision 

points of the n-th photon in the phase space and m is 
the number of the last collision before the photon 
escapes or is absorbed, are modeled according to the 
two distribution of the direction of scattering 
P(  

 
), appearing in the definition of the kernel 

k(x  x). After each successive collision at a point 
the contribution n n

i i( )W x  is added to the statistical 

estimate of I and 
 

 
 

where N is the number of trajectories and n
iW  is the 

“weight” of the n-th photon after the i-th collision. 
 

5. MODELING OF THE MARKOV CHAIN 
 

To solve the transfer equation it remains only to 
model the photon trajectory. The modeling process is 

based on the kernel k, which consists of two 
probability distribution of the photon free path length 
in the direction 

r
 and the probability distribution of 

scattering in the direction .
r

 
1) Modeling of the free path length. The optical 

free path length is 
 

ln ,     
 

where  is a random quantity distributed uniformly in 
the interval (0,1). From here the optical free path 
depth is 
 

 
 

2) Modeling of the direction of scattering. Let 



 be the direction of propagation of the photon prior 
to a collision. We shall study the question of modeling 
the direction 


 after the collision. The probability 

distribution of a transition from the state 


 into the 
state 


 has the form 

 

 
 

We note that the modeling density must satisfy 
two requirements: 1) it must be convenient for 
modeling and 2) it must be universal. 

We shall explain. Universality means that the 
density employed in the computational algorithm 
should be independent of the real distribution. 
Otherwise it would be necessary to construct a specific 
modeling formula for each computational variant, and 
the computational algorithm would not be universal. 
In the Monte-Carlo method the modeling is performed 
based on some uniformed and convenient density, and 
to compensate for the bias of the statistical estimate 
the "weight" of a particle in each collision is 
multiplied by a corresponding factor. The "weight" 
appears as a factor in the contribution function. 

Thus we shall represent the function P(   
 

) 
as a superposition of two distributions: 
 

 
 

The direction 


L  can now be modeled as follows. 

We model the normal of a leaf 


L  using the 
distribution 
 

 
 

and then, knowing 


L,  we model the direction 


 

using the distribution f(    
  

L, ). However the 
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density P(


L ) does not satisfy the two requirements 
mentioned above: simple modeling formulas do not exist 
and the distribution function of the leaf normals gL(


L ) 

is, in the general case, a multiparametric function. 
Assuming that the leaf normals are distributed 

uniformly over the azimuth  and using a 
three-parameter family for their distribution over ,3 
we represent the density gL(


L )/2 in the form 

 

  
   


L L 2

1 2 1 1
( ) * ( ),

2 21
g g  

 

where 
 

 
 

a, b, and c are const. 
 

We shall regard the function 
2

1 2
2 1   

 as a new 

probably density for the direction 


L  (L, L), 

where 1/2 is the probability density along L and 

2

2

1  
 is the probability density along L. Thus the 

density along  


L  is convenient owing to the 

simplicity of the modeling formulas: L = 2, 
1 = sin (/2), where  and  are random 
(independent) quantities, uniformly distributed in the 
interval (0, 1). 

We now separate from function P( 


L ) the 
density mentioned above: 
 

 
 

The first factor is used as a new density for 


L  and the 
second factor is multiplied by the "weight" of a 
particle in each collision. It should be noted that the 
factorization can also be performed in a different 
manner, but the method we have chosen is convenient 

because the unbounded cofactor 1/ 21    is included 
in the density, and correspondingly, it is excluded 
from the "weight", so that the estimate remains 
bounded. Unboundedness of the estimate would result 
in large computational errors. 

Modeling of the direction 


 with known 


L  is 
performed using the density of the interaction of a 
photon with the surface of a leaf. In the case of a 
bilambertian scattering law 
 

 
 

where rL and tL are differential reflection and 
transmission coefficients. Then 


 is modeled by the 

formulas 
 

 
 

where  and  are the coordinates of the vector 


 in 
a spherical coordinate system with axis L, and 
 

 
 
where , , and  are random quantities uniformly 
distributed in the interval (0, 1). 

3) Calculation of the contribution function. For 
the contribution function we must use not the exact 
quantity (, ), which is difficult to calculate after 
each collision, but rather its estimate randomized over 
L f(   

  
L*, )exp(–*)/*. Here 


 is the leaf 

normal  modeled after a collision and * is the optical 
thickness of the layer from the collision point to the 
detector in the direction of observation 


*.  

 
6. INCLUSION OF REFLECTION GLARE 

 
The model constructed above approximates well 

PC in which the phytoelements are negligibly small 
compared with the height of the plants and only the 
probability distribution of their normals is given. In 
real PC, however, the phytoelements have finite sizes. 
In results in the formation of the so-called reflection 
glare in the SBC: the brightness of the PC increases 
significantly in the direction of the sun and this 
increase depends on the geometric structure of both a 
single plant and the crop as a whole.4 The extinction 
coefficient of the radiation flux in the direction 


 

after a collision depends not only on the distribution of 
the normals gL( 


L ) (see Eq. (2)), but also on the 

direction of motion prior to the collision. If the 
cross-correlation coefficient of the indicator functions 
of the presence of lamella in the differential layer in 
the direction 


 and 


 is known,5 the new 

extinction coefficient , which depends on the 
dimensions of the phytoelements can be calculated. In 
the case of uniform PC we have 
 

 = 
 

 
 

where   


( ) / ,A G      


( ) / ,A G  and 
              

   
2 1 1/2

0( , ) ( 2( ) / ) ,  where  is  
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the average length of the chord of a phytoelement. 
Understandably, in the case   

 
,  i.e., when the 

reflection occurs strictly backwards, there is no 
extinction and  = 0. 

Thus in modeling the free path length of a photon 
we use instead of G(


) the new extinction coefficient 

. Here  are the average linear parameters of a leaf.5 
 

4. CONCLUSION 
 

The method proposed above for solving the integral 
equation of radiation transfer (for vegetation) by the 
Monte-Carlo method makes it possible to estimate the 
spectral brightness coefficient of the "soil - vegetation" 
system for different types of agricultural crops. 

The results are in good agreement with the 
solution of the integrodifferential equation by the 
method of discrete ordinance. 
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