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The generalized Euler series transformation method is extended to the case of a series of two 
variables. It is applied to summation of the Dunham series for diatomic molecules. The Kratzer 
oscillator – the exactly solvable problem of quantum mechanics – is used as an approximating 
function. A new expression for the Dunham series is obtained, and the transformed series turns out to 
be a functional one, which corresponds to partial summation of the original series. 

 

Introduction 
 

For calculation of the atmospheric transmission 
function, it is necessary to know with high accuracy the 
positions and intensities of spectral lines of diatomic 
molecules and radicals, such as O2, OH, CH, HCl, HF, 
and others. The energy levels of diatomic molecules 
can be represented as the Dunham power series (of 
the perturbation theory) in terms of the rotational 
J(J + 1) and vibrational (V + 1/2) quantum numbers.1 
However, the perturbation theory cannot be applied 
to highly excited rotational-vibrational (RV) states, 
because in this case the perturbation series are poorly 
convergent or even divergent. As a consequence, it is 
necessary to apply a specialized method for summation 
of the series. 

In Refs. 2–9, various methods of summation of the 

series (1/N-expansion, rational approximation) were 
already used for calculation of the RV energy levels 
of diatomic molecules. The use of these methods 
significantly improved the calculations, but it seems 
useful and necessary to study the applicability of other 
methods for summation of the series. New methods for 

calculation within the framework of the perturbation 
theory, checked for diatomic molecules with relatively 
simple RV energy spectrum, may also be useful for 
more complex molecules, for example, triatomic H2O, 

CH2, H3

+
, and others. It is well-known that calculations 

by the perturbation method for such molecules face 
significant difficulties associated with quick divergence 
of the series.  

The generalized Euler transformation is an 

efficient instrument for summation of the divergent 
series. Note that this transformation allows the 
summation of even rapidly divergent series of the 
quantum-mechanics perturbation series in the case of 
one-dimensional anharmonic oscillators.10

 It also 

allows one to use an additional information about the 
summed function in transformation of the series. 

Earlier,11,12 the generalized Euler transformation was 
presented for the Dunham series of diatomic molecules, 
which were considered as the series of a single variable. 
In this paper, the Euler method is modified to be 

applied to summation of a series of two variables. The 
technique developed permits the Dunham power 
series to be presented as a functional series, which 
corresponds to its partial summation. 

 

Generalized Euler transformation  
for the series of two variables 

 

Let the function f(x, y) of two variables x and y 
be expanded into the following series  
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and some its estimate – an approximating function – 
be known  
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Let the condition  
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f
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be fulfilled at , .i j → ∞  Then the initial series (1), 

which may be divergent, can be transformed into the 
convergent (or better convergent, if the series (1) 
converges slowly) in the following way: 
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Then we use the relation  
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and transform the series, excluding sequentially the 
coefficients gij from the transformed series (4). We 
obtain (for the case n = 3) 
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If the condition (3) is fulfilled, then the 

coefficients of the transformed series tend to zero with 
the growth of the total power of both x and y, and the 
series (6)  must  converge  better  than the initial one. 

It should be noted here that the series (6), 
unlike (1), is a functional one, that is, the performed 
transformation with the use of the approximating 
function is equivalent to its partial summation. 

 

The Dunham series and Kratzer  

oscillator 
 

Application of the perturbation theory to 

calculation of rotational-vibrational energy levels of 
diatomic molecules leads to the series expansion 

depending on two parameters 

1: 
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where v is the vibrational quantum number; J is the 
angular momentum quantum number, and the series 
coefficients Ynm are called the Dunham coefficients. 
They are connected, in a certain way, with the 
coefficients of expansion of the potential function into 
a power series in terms of displacements from the 
equilibrium position.1 

The Dunham series is a power series of two 

variables: vibrational y = v + 1/2 and rotational 
x = J(J + 1) ones. It is convenient to represent it as 
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where the coefficients are re-grouped so that Å(0, 0) = 0. 
This representation of the Dunham series corresponds 
to  selection  of  the zero level as an energy reference. 

The Kratzer equation describes the rotational-
vibrational energy levels of diatomic molecules with 

the potential function  
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where À and Â are the constants of the potential 
function. The Schrödinger equation with this potential 
has the exact solution, and the energy levels can be 
presented as the equation 

13: 
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which will be called the Kratzer function. Here µ is the 
reduced mass of the diatomic molecules, the energy is 
measured from the zero level v = 0, J = 0, and the 
constants a and b can be expressed through the 
dissociation energy Ed and the equilibrium distance re: 

 
2 22 2 2

e ed d2 / ,  1 4 2 / .= µ = + µa E r h b E r h  

Equation (10) can be used for transformation of 
the Dunham series to a more convenient form, so that 
the transformed series has better convergence 

properties and the corresponding function has a 
correct asymptotic at high values of v and J. Note 
that the Kratzer function gives the qualitatively correct 
asymptotic dependence: energy levels are concentrated 
in the interval determined by the depth of the 

potential well, while the asymptotic behavior of the 
Dunham series at high y = v + 1/2 depends on the 
sign of the highest term held in the expansion (7). 
 

Transformed Dunham series 
 
Using Eqs. (6) and (10), after some obvious 

transformations we can have the following equation 
for the transformed Dunham series: 
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The transformed series is presented here up to the 
third-order terms inclusive. In Eq. (11) it is convenient 
to introduce the following designations Z1(x) = 

= 1/(x + b) and Z2(x, y) = 1/(y + x + b), then the 
transformed series is the power series in terms of 
Z1(x) and Z2(x, y): 
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Thus, using Eqs. (5) and (6) derived above for the 

generalized Euler transformation of the series of two 
variables, we can obtain a new representation of the 
perturbation series for RV energy levels of diatomic 
molecules. The transformation procedure presented by 
Eqs. (5) and (6) is an extension of the well-known 
method 

10
 for the series of two variables. It can be 

readily seen that this procedure can be also applied 
for the series of three and more variables. 

The transformed Dunham series (12), unlike the 
initial one (8), is a part of the functional series. It is 
obvious that expansion of Eq. (12) into the Taylor 

power series in terms of x and y returns the initial 
equation with the Dunham coefficients Yij up to the 
total power n = i + j = 3. Higher terms of the expansion 
n > 3 estimate the higher-order Dunham coefficients. 
In contrast to the finite part of the Dunham series, 
which is used in practice for description of experimental 
data, these estimates meet a certain asymptotic 

condition caused by the inequality  
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At the same time, the asymptotic behavior of the 
initial perturbation series is incorrect at high values 
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of v and J, and the function determined by it takes 
the values ± ∞ depending on the sign of the last term 
held in Eq. (7). 
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