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A spectral approach to the three-dimensional problem of nonlinear phenomena which 
are associated with the radiation intensity is proposed. The approach is based on 
Maxwell’s equations and the general expression for the polarization of the medium. The 
frequency-dependent component of the polarization is represented as a power series in the 
spectral components of the field intensity; the solution of the nonlinear problem is ex-
pressed in terms of the solution of the corresponding linear problem. The problem is 
reduced to a second-order nonlinear differential equation, whose solution is found. The 
problems associated with using the solutions to boundary-value problems are discussed. 
The main attention is devoted to the propagation of radiation near the spectral lines of 
a molecular atmosphere. The discussion is limited to media with cubic nonlinearity. 

 
 

1. INTRODUCTION 
 

In this paper the spectral approach to the problem 
of propagation of high-power radiation near the 
spectral lines of natural media is discussed. The dif-
ference from regimes of linear interaction appears 
owing to the nonlinear response of the medium to the 
light and has not been adequately studied, even for 
monochromatic radiation. At the same time the 
propagation of light pulses near the spectral lines of a 
medium is of practical interest. In this region certain 
peculiarities appear owing to the finite spectral 
composition of the incident radiation and the power of 
the pulses. In particular, the distortion produced in the 
pulse spectrum (shape) by the nonlinearity of the 
complex index of refraction of a molecular medium 
near spectral lines is of interest. The real and imagi-
nary parts of the nonlinear dielectric constant of a 
medium are responsible for different nonlinear proc-
esses.1 It is well known, for example, that the de-
pendence on Re ( is the complex dielectric constant) 
significantly affects the evolution of the pulse shape. 
Here the behavior of the pulse shape as a function of 
the sign of the detuning near resonance is of special 
interest; this difference can be very significant.2,3 In 
the works cited the method of amplitude envelopes 
was employed. This method is generally accepted and 
is very fruitful in nonlinear optics. 

In addition to describing the field with the help of 
envelopes, there exists a different approach to the 
solution of such problems. This is the spectral ap-
proach. In what follows the spectral approach is used 
to give a spectral description of self-action; it hardly 
has any explicit advantages over the envelope method, 
but in some problems the spectral description of 
self-action is more convenient. For example, it is more 
convenient for solving problems of radiation transfer 

in nonlinear media or for problems in nonlinear dif-
fraction.4 In addition, the method makes it possible to 
obtain a solution in a final form from Maxwell’s 
equations. We understand the so-called spectral 
method as follows. 

Any physically realizable field can be expanded in 
a Fourier integral. The nonlinear field, prescribed at a 
time t at the point r (and produced by the nonlinear 
response of the medium) can be expressed as 
 

 (1) 
 
where E(r, , ) is the frequency component of the 
nonlinear field and  is the nonlinearity parameter. 
The condition that the nonlinear field must reduce to 
the linear field means that 
 

 (2) 
 
where E(, r) is the frequency component of the linear 
field. 

If the representation 
 

 (3) 
 
is assumed, then the solution of the problem (3) can be 
employed in Eq. (1). In Eq. (3) we write ,̂  but it 
will become clear below that in simple cases this is 
simply a function  of [E(, r)]. In the case of an 
isotropic medium and linearly polarized radiation 
 

 (4) 
 
In what follows we shall confine our attention to this 
simple case. 
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In the spectral approach it is assumed that' the 
solution of the linear problem is known. The peculi-
arity, however, lies in the fact that if a detailed so-
lution of the linear problem is not available, then the 
qualitative behavior of the nonlinear solution can be 
judged only based on some general relations, which 
depend on the character of the nonlinear corrections to 
the linear problem. In addition, we are often interested 
precisely in the changes in the spectrum, so that it is not 
necessary to solve Eq. (1), i.e., to invert an integral. 
 

2. POLARIZATION 
 

We shall investigate the possibility of con-
structing the representation (3) from the 
time-dependent Maxwell’s equations. In Maxwell’s 
equations the expression for the nonlinear polarization 
can be represented in the form5 
 

 
 

 
 

 
 

 (5) 
 
Here all quantities are real and E is the nonlinear field. 
The field is linearly polarized. It is assumed that the 
light pulse is narrow:  ` 0, where  is the 
spectral width of the pulse and 0 is the average 
frequency of the pulse. We are interested in the in-
teractions associated with the intensity of the radia-
tion at the frequency of the incident field (self-action). 
The medium is isotropic (a gas or liquid). The even 
terms in the expansion (5) vanish. The linear polari-
zation of the field makes it possible to rewrite Eq. (5) 
in the following form: 
 

 
 

 
 

 (6) 
 
We shall transfer in Eq. (6) to frequency components: 
 

 
 

 (7) 
 

Here the expression in braces of Eq. (6) is denoted by 
K(t, t1). We further assume that the integral in Eq. (7) 
 

 
 
does not depend on t and must be a function only of the 
frequency  not only in the linear approximation but 
also in the general nonlinear case: 
 

 (8) 
 
This assumption simplifies the calculation of the 
integrals in the expression (7). In the zeroth (linear) 
approximation we have 
 

 
 
Consider the next term: 
 

 
 

 (*) 
 
By assumption this expression must be a function only 
of the frequency (and it should not contain oscillating 
functions of the type exp( ±it)). We have 
 

 
 
where 
 

 
 

 
 

Using further the condition  +  = 0, where 
 and  differ from u by not more than the width  
of the signal spectrum ( ` ), we can write ap-
proximately 
 

 
 

 (**) 
 

In writing the quantity 1() the fact that the 
signs of  and  can be interchanged is taken into 
account. The transition from (*) to (**) is thus made 
under the assumption that  `  – 0, where 0 is 
the average frequency of the pulse (see Ref. 6, p. 95). 
This also means that mode interaction is neglected 
within the spectral width of the pulse; this ap-
proximation becomes better as the spectrum of the 
pulse becomes narrower. The result is exact when the 
pulse degenerates into a monochromatic field. 
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Proceeding in an analogous manner with the 
remaining terms in the series (6), we arrive at the 
following expression for the polarization: 
 

 
 

 
 

 (9) 
 
Here 0, 1, 2,  are function of the frequency; 
spatial dispersion is neglected. Using the relation 
between the induction and the polarization D = 
E + 4P, we obtain for the dielectric constant 
 

 
 

 (10) 
 
where L = 0 + i1 is the standard (linear) dielectric 
constant. The specific form of the function i(or i) can 
be found, as usual, from model representations. 
 
3. CONSEQUENCES OF THE ASSUMPTION (3). 

EQUATION FOR THE FUNCTION  
 

The equations of the field in an isotropic non-
magnetic medium, in which the time dependence of the 
fields is of the form e–it, satisfy time-independent 
relations:7 

 

 (11) 
 

 (12) 
 
where k0 = w/c, and L is the dielectric constant. 

Because of linearity (the index L) the equations 
(11) and (12) are insensitive to the strength of the 
field. For sufficiently large E the measured quantities 
(quadratic in the field) do not, however, agree with 
Eqs. (11) and (12). To remedy this situation the 
response of the medium to the incident field must be 
taken into account, i.e., the dielectric constant L must 
be supplemented by terms which depend on the in-
tensity of the field. The corrected equations (11) and 
(12) will have the form 
 

 (13) 
 

 (14) 
 
Here in order to distinguish the solutions of Eqs. (11) 
and (12) from the solutions of Eqs. (13) and (14) dif-
ferent fonts are used for the fields.) In what follows we 
shall study cubic media. Equation (14) assumes the form 
 

 (15) 
 
The problem is to determine the relation between the 
fields E and E under the assumption that the solutions 
of these problems for each of the fields are known. 
Thus obtaining a relation between E and E makes it 
possible, inprinciple, to write the solution of the 
nonlinear problem in terms of the solution of the linear 
problem. We shall write out below the required re-
lations. It is assumed that 
 

 (16) 
 

where 
2S  E  and  is a complex function. It is 

significant that this solution makes it possible to 
assume that the field is locally transverse. This fact 
makes it possible to identify the direction 
 

 (17) 
 
at each point with the direction of the vector S of the 
linear problem. Here8 
 

 (18) 
 
m = n + iê is the complex index of refraction; 
 = 2k0ê is the absorption coefficient: L = m2 is the 
dielectric constant 
 

 
 
and n = S/S is the unit Poynting vector. Together 
with the definition of the electric vector (16), we 
define with the help of Eq. (13) the nonlinear mag-
netic vector 
 

 (19) 
 
Here (and below) a prime or a dot denotes a derivative 
with respect to the argument. 

The equation for the function  can be derived by 
a number of methods. One method is the following. 
From Eqs. (13) and (14) and the definition (16) it 
follows that ( = 2/L) 
 

 (A) 
 
Here Eq. (14) in the form Eq. (15) was used. 

From Eq. (13) we obtain, with the help of the 
definitions of E and H 
 

 (B) 
 
From Eqs. (A) and (B) we obtain 
 

 (C) 
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Thus the equation for the function p follows from the 
condition that Eqs. (13) and (14) of the nonlinear 
system of Maxwell’s equations under the additional 
condition (16) be compatible. An equation for media 
whose nonlinearity is determined by an arbitrary 

dependence  2
NL   can be written down in an 

analogous manner. The method developed here does 
not cover the case when the propagation medium is 
completely transparent (ê = 0). This fact, of course, 
is not an obstacle to using Eq. (C), because, for 
example, molecular scattering is always present. 
Scattering of electromagnetic waves removes some 
electromagnetic energy from the total beam and this is 
equivalent to absorption of this energy. Moreover, it is 
impossible to imagine a transparent medium whose 
nonlinearity can have any physical meaning. 

The following remarks are in order. The radius 
vector r does not appear explicitly in Eq. (C). The 

quantity 
2

( )S r E  can always be constructed from 

the solution of the linear problem. It can be shown that 
the formulation of Poynting’s theorem for a nonlinear 
field has a very clear interpretation: 
 

 
 
where SNL is the Poynting vector for nonlinear vectors; 
this fact is an additional argument in support of the 
reasonableness of the assumption (6). The meaning of 
the expression (16) thus consists of the following. If S 
has some distribution over amplitude and frequencies 
in a neighborhood of the radius vector r, then with the 
help of the function (S) it is possible to construct in a 
neighborhood of this point in space the field E(r), 
which can then be integrated over frequencies according 
to (1). Of course, the linear field E(r) must be known. 

In Eq. (C) the product of the parameter by the 
intensity S is the nonlinear correction to the dielectric 
constant L. We shall study the simplest case of a cubic 
nonlinearity. Other cases associated with the repre-
sentation (10) can be studied. For example, these can 
be multiphoton processes or processes with saturation, 
etc. (a long list of self-action effects is given, for 
example, in Ref. 10). 

Finally, we make a remark regarding the 
boundary conditions for Eq. (C). These conditions 
follow from the definition of the fields (18) and (19): 
 

 (20) 
 
where S0 is the initial intensity of the field.  
 

4. EXPLICIT FORM OF THE FUNCTION  
 

We shall start from Eq. (C) in the form 
 

 (21) 
 

 (22) 
 

After introducing the new independent variable 
x = S/S0 Eq. (21) assumes the form 
 

 
 

 (23) 
 

Next, the substitution of variables 
 

 (24) 
 

leads to the following equation for Z(): 
 

 (25) 
 

introducing the notation 
 

 = n/ê, (26) 
 

the substitution of variables (24) assumes the form 
 

 (27) 
 

and Eq. (25) can be written in the form 
 

 (28) 
 

We shall now summarize the solution of Eq. (28). 
Dividing Eq. (28) by the real and imaginary parts, we 
have 
 

 
 

 (29) 
 

 (30) 
 

 
 
The solution of Eq. (29) can be sought, for example, 
in the form of an elliptic cosine 
 

 (31) 
 
where k is the modulus and C is an additive constant. It 
is easy to verify, however, that compatibility with 
Eq. (30) can be achieved only if the cosine-amplitude is 
degenerate 
 

 (32) 
 
We shall study below four regions of the spectrum in 
which the constants  and   have different signs.11 

a.  < 0,  < 0. As the solutions of the system of 
equations (29) and (30) we study the system of functions 
 

 (33) 
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where  is a particular solution of Eq. (30). Substi-
tuting Eq. (33) into the system of equations (29) and 
(30) leads to the following values of the constants in 
Eq. (33): 
 

 (34) 
 
We call attention to the last relation in Eqs. (34). It 
relates the nonlinearity parameters with the parame-
ters of linear absorption. For the phase we have 
 

 (35) 
 
and the constant 0 is determined from the conditions 
(20). Thus the solution has the form 
 

 
 

 (36) 
 
In order to normalize this solution we shall use the 
additive constant C. For S = S0 we have x = 1 and 
then from Eq. (36) 
 

 
 
hence 
 

 (37) 
 
Next we must return to the starting independent 
variables: 
 

 
 

for monochromatic radiation, i.e.,  = –, where  is 
the optical thickness of the medium:  = z, where z is 
the distance (path). 

Next we assume that the values of the initial 
intensity S0 are such that the corresponding constant A 
is equal to one. Then C = 0, 0 = 0, and 
 

 
 

 
 

For the intensity we have 
 

 
 

 (38) 
 

Note that the nonlinear parameters  and  do not appear 
in the expression (38). For large optical thicknesses 
 

 
 
so that for large z from the source 
 

 (39) 
 
This result distinguishes Bouguer’s law for a linear 
medium from a nonlinear medium of the cubic type for 
large . Here, by assumption, A = 1 and the initial 
intensity S0 satisfies the relation (see Eqs. (34), (26), 
and (22))  
 

 (40) 
 

b.  < 0,  > 0. The result is the same as above. 
c.  > 0,  < 0. The solution of the system of 

equations (29) and (30) can be written in the form 
 

 (41) 
 

 
 

 (42) 
 
where the constants C and 0 are defined in the usual 
manner. We write Eq. (42) under the assumption that 
A = 1: 
 

 
 

 
 
For the intensity we have 
 

 (43) 
 
This result differs from Eq. (38) for large values of z 
also. Experiments indicate that the effects indicated 
above can also appear in the far wings of spectral lines.12 

d.  > 0,  >0. The result is the same as in the 
preceding case. 
 

5. CONCLUSIONS 
 

This investigation raises the problem of studying 
further nonlinear effects in the region of spectral 
lines of real media. It was found that in the case of 
cubic media the attenuation of the radiation depends 
on the sign of the imaginary nonlinear correction 
( > 0 or  < 0) to the dielectric constant of linear 
optics. The formulas describing the generalized form 
of Bouquer’s law for nonlinear media show the 
difference from the case of the usual fields. In ad- 
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dition, the ratio / as a function of the parameters 
of the linear theory is predicted – a result that 
follows from Maxwell’s equations for cubic media 
with a mechanism for self-action of the waves. It is 
significant that the proposed model of spectral 
self-action makes it possible to obtain an exact 
solution of the problem posed in the general 
three-dimensional form. It should be noted that 
within certain limits the characteristics of the 
propagation of a radiation pulse as well as some 
problems of nonlinear diffraction of waves by par-
ticles can be studied. In particular, under certain 
restrictions on the shape of the initial pulse, it can be 
expected that soliton-like pulses will form in the 
medium. 

The problem studied in this paper is one of the 
simplest examples illustrating the proposed method. 

I thank Professor S.D. Tvorogov for discussions 
of the formulation of the problem. 
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