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A way to generate an active medium by the use of a stationary electric field is proposed to 
amplify ultra-high frequency radiation in the range of λ ∼ 10 cm. The way is based on dispersing of 
lengthened conducting nanoparticles. The volume concentration of nanoparticles and the necessary 
value of the stationary electric field for pumping the medium are estimated. 

 
At present, dust particles in a neutral gas medium 

or in an ionized gas are under active study. This 
direction is promising for numerous technological 
applications: combustion processes, plasma technologies, 
atmosphere physics, controlled thermonuclear fusion. 
In plasma technologies, main attention is paid to 
crystallization of dust particles in gas-discharge plasma, 
i.e., to formation of ordered structures.1,2 Of certain 

interest are processes connected with interaction of 
radiation with nanoparticles and nanostructures.3,4 In 
this paper a system of material equations is derived, 
which describes the amplification process in a resonator 
of ultra-high frequency radiation λ ∼ 10 cm in the 
presence of conducting nanoparticles. The medium is 
pumped by a stationary electric field. The mass 
concentration of nanoparticles and the magnitude of 
the pumped field necessary for this process, are 
estimated 

Let there be a non-bounded domain consisting  
of lengthened nanoparticles of concentration n. 
Electromagnetic radiation propagates through the 
domain. The electric field is denoted by E(t, r). To 
describe the mechanism of interaction of such particles 
with the electromagnetic radiation, we approximate 
the particles by two similar conducting balls of 
radius R and mass m (see Figure). 

We suppose that the balls are connected by  
a conducting thin bar of length L, with elastic 

coefficient �k  and electric resistance r0. Let g1(t) and 
g2(t) be charges on the first and second balls, 
respectively. We suppose that the dipoles are parallel 
to the electric field of the wave. 

In the general case, polarization consists of the 
linear P0 and non-linear P1 polarizations: 
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where P0, P1 are amplitudes of vectors P0, P1; n is 
the concentration of nanoparticles; x(t) is the quickly-

oscillating in the scale of charge difference quantity, 
which characterizes the variation of the distance between 

the balls due to elastic forces; x << L; g1 + g2 = 
(0) (0)
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Fig. Approximation of lengthened nanoparticles by a 

dumbbell. 

 
It is easy to see that P1 is the variation of the non-
linear polarization under the corresponding variation 
of charges. The linearity of P0 in Eq. (2) follows from 
the fact that (g2 – g1)/R = LE for R << L, i.e., 
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where the electrical susceptibility χ = nRL2/2 = 
= const. 
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Taking into account the obtained relations, the 
equation for a field in a resonator with dispersed 
nanoparticles can be written in the form5 
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where ε = 1 + 4πχ is the dielectric capacity; τ is the 
time of resonator attenuation. In Eq. (4), spatial 
distribution of the polarization P1, which depends on 
the resonator field, is supposed to be the same as for 
the normal mode of the resonator field. 

In the absence of radiation, the energy of the 
system for R << L is 
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where 
(0)
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2g  are charges on the balls at the start 

moment. 
In the presence of the radiation field at an 

arbitrary time 
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where 
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From Eqs. (5) and (6) we obtain that the energy 
of the system in the presence of radiation is 
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It was taken into account in the derivation of Eq. (7) 
that the following relation takes place: 

 + =
2 2 (0) 2 (0) 2 (0) (0)
1 2 1 2 1 2 1 2– ( ) – ( ) 2 – 2 .g g g g g g g g  

By the use of the introduced variables N, P, the 
law of conservation of energy in the presence of a 
field can be written in the form 
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where Ò1 is the relaxation time for the value N – N0 
in the absence of a field. Here we neglect the linear 
polarization. 

The equation (8) is one of the two material 
equations.5 Now derive the second equation. Relative 
to the generalized coordinate õ = õ2 – õ1, where õ1, õ2 
are respectively the coordinates of the balls’ centers, 
the following motion equation takes place: 
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Here µ = m/2 is the reduced mass; 2 2
d /d .x x t=��  

Equation (9) was derived with allowance for the fact 
that the charges q1 and q2 change places with 
amplification of the field (see the Figure). 

Taking into account the forces of friction and 
the relation (1), obtain from Eq. (9) 
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where Ω = μ�
2 / ;k  Ò2 is the relaxation time of the 

non-linear polarization. The relation (10) was derived 
with allowance for the inequality 
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Taking into account Eq. (2), equation (10) can be 

written in the form 
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where N, N0 are defined in Eq. (7); the second 
summand in Eq. (11) characterizes the dissipative 
processes, for instance, forces of friction of the balls 
due to the presence of air. 

The equations (4), (8), and (11) form the system 
of material equations in a resonator. Lengthened 
nanoparticles play the part of the medium. In this 
paper, lengthened nanoparticles are approximated  
by lengthened electroconducting dumbbells. The 

variables N and P1 in Eqs. (8) and (11) play the part  

of population difference between the levels and 

polarization, respectively (see Refs. 5 or 6). 
Let us consider a coherent radiation in a resonator: 
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Suppose that the resonator is tuned so that 
ω = Ω = ω0. Then, it follows from Eqs. (11) and (12) 

that 
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Substituting Eq. (13) into Eqs. (4) and (8), we 

obtain 
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It follows from Eqs. (13) and (14) that 
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Let us estimate the coefficient at ⏐ E� ⏐2 in the 
right side of Eq. 15. It has the dimension of the 
inverse value of time: 
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where m = 2μ. 
Let ωT2 = 103, ω = 2 ⋅ 1010 sec–1 (the wavelength 

in vacuum λ ≈ 10 cm); ρ = 2 ⋅ 103 kg/m3 is the density 
of the balls of radius R; L = 50R; R = 10–8 m; 

2

0E /8π = 10 J/m3 is the energy density of the 

electrostatic field, by which the system is pumped; 
ε = 1; ñ0 = 8πR3

n/3 = 10–3
 is the volume concentration 

of the dumbbells. Taking into account the relation 
m = 4πR3/3, we obtain from Eq. (16) for N = 0: 
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where equation (17) was derived with allowance for 

=
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It is seen from Eq. (17) that T ≈ 7.1 ⋅ 10–8 sec, 
while the period of electromagnetic oscillations is 
2π/ω ≈ 3.2 ⋅ 10–10 sec–1. 

Now estimate the value of oscillation frequency 
of the lengthened particles, considering cylinder-
shaped particles instead of dumbbells. Suppose that 
the mass of a cylindrical bar of length L is localized 
at the ends of the bar. Then the reduced mass of the 
oscillator is 

 μ = = π ρ
2/2 /4,m R L  

where ρ is the density of the bar mass. The relation 
 

 = π
�
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where W is Young’s modulus, takes place for the 
elasticity coefficient in the case of lengthened 
nanoparticles. Then the oscillation frequency is 

 Ω = μ = ρ�
2/ 4 /( ).k W L  

For majority of metals, Young modulus is  
in the range of W ∼ 109

 ÷ 1012 J/m3. Putting 

ρ = 2 ⋅ 103 kg/m3, obtain Ω ≈ 3 ⋅ 109
 ÷ 9 ⋅ 1010 sec–1, 

what does not contradict to the above-mentioned 
supposition ω = 2 ⋅ 1010 sec–1. 

Now estimate the time T1 in Eq. (8). In the 
International System, when the field Å = 0 is absent, 
we have 
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where ε0 is the electric constant. Taking into account 
Eqs. (7) and (8), one can write the equation (18) in 
the form 
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It follows from Eq. (19) that T1 = πε0Rr0. To estimate 
the magnitude T1, we need the Ohm law. Justify the 
possibility of applying this law in our problem. For 
continuous media, the length of a free path of an 
electron is λ0 ∼ 10

–10 cm, whereas the size of balls in 
our case does not exceed the value R ∼ 10–8 m 
(L ∼ 10–7 m). It means that, under such scales,  
the motion of electrons occurs in correspondence with  
the macroscopic motion of electrons in conducting 
media. The depth of field penetration in our 
calculations, due to the skin-effect, is of order  

of 0/ 2 /(2 )c cδ = πσω = ε σω ∼ 10–6
 ÷ 10–5 m >> R, 

where σ is the electrical conductance; ε0 = 
= 8.85 ⋅ 10–12

 F/m. For the resistance, there is a 
relation r0 = ρ0L/S = 20ρ0/(πR) implying T1 = 20ε0ρ0, 
where ρ0 = 1/σ is the specific resistance. For the 
graphite, ρ0 ∼ 10–5 Ω ⋅ m, and, therefore, T1 ∼ 10–15 sec. 
It is seen that the first summand ∂N/∂t in Eq. (8) 
may be neglected for ω = 2 ⋅ 1010 sec–1. 

Thus, the obtained system of material equations 
describes the process of amplification of ultra-high 
frequency radiation at λ ∼ 10 cm in a resonator. For 
ω = 2 ⋅ 1010 sec–1 and volume concentration c0 = 10–3

 

for lengthened nanoparticles L = 50R the characteristic 
time of amplification is T1 ∼ 10

–8
 ÷ 10–7 sec. The 

theoretical approach, which was presented in this 

paper, also makes it possible to consider the 

amplification process for a running wave, i.e., 
amplification of ultra-high radiation. 
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