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Within the framework of the soft particle approximation (SA), the small scattering angle
representation for the Mie amplitude functions is constructed. The general analytical criterion of transition
from SA of any optical characteristic to its anomalous diffraction approximation (ADA) is formulated.
The ADA for the small-angle scattering phase function is determined and its applicability domain is
investigated. The ADA and the Kirchoff approximation are shown to have the same asymptotic behavior.

Investigation of scattering and extinction properties
of spherical particles is needed in solving radiative
transfer and remote sensing problems, as well as to study
optical and microphysical properties of aerosol and
hydrosol. Calculations by the Mie theory present no
principal difficulties now, but to understand the physics
of the phenomenon, it is reasonable to consider
approximate equations that are valid in some limiting
cases.! Such equations based on the physical meaning of
their domain of applicability correspond, for example, to
the anomalous diffraction approximation (ADA) proposed
by van de Hulst,2 Rayleigh—Gans approximation (RGA),
Kirchoff approximation (KA),!=3 KA with correction
factor.3:4

The method for approximate summation of the Mie
series for soft particles (S-approximation, SA) was
considered in Refs. 5 and 6. This method is based on
formal substitution of the scattering coefficients by their
average values (the error of averaging uniformly tends
to zero as the complex refractive index m tends to unity)
and the following exact summation of the transformed
Mie series with the use of addition theorems for spherical
Bessel functions. In Refs. 7 and 8 it was shown that SA
gives a small error in the range of the size parameter
values x and the values of the refractive index m, that
allow the optical properties of actual disperse media to
be investigated.

The SA turned out to be useful in solving some
problems of light scattering.® In particular, the SA
was used in studying the scattering phase function of
infinite dielectric cylinders,!0 in the theory of scalar
diffraction,!! in the study of energy characteristics of
scattering,!? in establishment of relations between
various optical approximations.!3

Let us denote

p=2(y-x); R=2(y+x); y=mx, €8

ap,(m,x) are the scattering coefficients; 6 is the
scattering angle; Ap(m, x,n) are the
(k=12

n=1,2,...). In some cases independent variables are not

w=cos0;

amplitude functions, n=n(n+1), n=n+0.5

explained.
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Accurate to 04, the small-angle amplitude functions
have the form$:

Ay(m,x,1)=6-0.25(1-p)(304 +09 —20),
Ay (m,x,1)=06-0.25(1-p)(c; +305 —20), @
where
6= ilay, +ay,), o= Y Midy, (3)
Now, find SA of the functions (2). Using the results of
Refs. 6 and 8, we obtain

01:x‘2(H“—iH13), 52=x_2(H22—iH24). (4)

Here
Hyy=x2o(y,x)+ y?alx,y) - 2xyB(x,y),
Hyy =y?a(y,x)+x%a(x,y) - 2xyB(x,y), )
Hys=x23(x,y)+y*y(x,y) - xye(x,y),
Ho =y?8(x,y)+ 22y(x,y) - xye(x,y),
where

a(x,y)= Y w2 ()i (y)

Bla,y)= D iy, (), (X)W (1), (1)
1(9)= D iy (2) 1 (0w (1) (6)
8(x,y)= D iy, (2) % ()i ()

e(x,y)= Y Al (2) X (X)+ W, ()15, (1 () W) (9).

The exact sums of the series (6) can be presented as

Sl )~ (1) fi(-m R, @
l

where f; are expressed in terms of the functions
ti(x)=x"Tsinx, d;(x)=x""cosx,
ty(x)=x"2(1-cosx), dy(x)-x"2sinx,

t3(x)=x3(sinx —xcosx), t;(x)=x"*[xsinx-2(1-cosx)],

X X
cix= jt‘1(1—cost)dt, six= jt‘1 sintdt. 8
0 0
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In its turn, the SA for the series o is presented by
Eq. (P5) (Refs. 7 and 8).

The ADA and RGA are particular cases of SA.6-8
The following formal criteria of transition from SA to
ADA and RGA are valid:

1. SA transforms into ADA if

p=2y-x) in fi(m,p)
only as an argument of the functions (8),
y = x in other cases. 9
2. SA transforms into RGA if
R=2(y+x) in f;(-m,R)
only as an argument of the functions (8),
y = x in other cases. (10)

Consider small-angle amplitude functions and the
scattering phase function in ADA. In view of Egs. (5),
(6), and (9), we obtain

o1=0y=2(a—B)-(2y—¢e)i. G50

It follows herefrom that Aj(m, x, u)=A(m, x, n),

that is, unlike the SA, ADA does not allow the study
of polarization effects. Using Egs. (21), (11), (P4),
and (P5), we obtain (x > 5)

A(m, x, p)=x2(1+8i)-0.25(1—p) x4 (yr+8i) . (12)

Here
1+t2
T:0.5+t2—t1;8=d2—d1;}’:?, (13)
where t,=t,(p) and d,=d,(p) [see Eq. (8)]. The

condition x > 5 is connected with the fact that an
additional term depending on the functions (8) at x = p
should be taken into account in Eq. (12) at small size
parameters x. Thus, accurate to O(64) we have (x > 5)

|A(m, 2, =[A(m, 1,1 g(m, x, 0),

|A(m, 2, 1) =24 (| +[52]),
(12 +[6]) »
q(m, x,1)=1-0.5(1-p)x? x
><3’1|T|2 +[32 + (v1 +D(= 148y +1581) +72 (1481 +728,)
o+

where 14, 81, v1 and 19, 89, vy are, respectively, real and
imaginary parts of 1, §, and y determined in Eq. (13).

The functions |A(m, x, 1)|2 and ¢g(m, x,pn) determine the

radial and angular factors of the small-angle scattering
phase function. Note that for dielectric spheres
Eq. (14) gives

|A(m,2,0)|2 =% (12 +82)-0.5(1— )b (yr2 +82). (15)
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In this equation, designations from Eq. (13) are used
and it is taken into accounts that t, 8, and y are real at
m = Re m.

Consider the particular case (15) corresponding to
large phase shifts p. Under this condition, we can assume
t=0.5,8=0, and y = 1. We have

|A°°(x,ll)|2 =0.25x%[1-x25in2(0.50)], (16)
where the designation

|47 (ac,)| = lim | A(m,20)], “u7n
p—®

accounting for the independence of the considered limit
on the refractive index m is taken into consideration. In
its turn, the KA for amplitude functions (2) can be
written as?:

AKIT (1) = xsin~! 6/ (xsin 0) . (18)

In view of Egs. (16) and (18), ADA and KA coincide
at small scattering angles accurate to O(6%), since
under this assumption Eq. (18) gives

AR () 20252 (1-0.25x2sin26).  (19)

It should be noted that ADA, unlike KA, takes into
account the dependence of the amplitude Mie functions
on the refractive index m.

The scattering phase function of a spherical particle
can be presented in the form

I(m7 X, H) = 1(m’ JC) Q(m’ X, “’))
i(m, x) = iy (m, x,1) + iy (m, x,1), (20)

iy (m, x, 1) + iy (m, x, 1)
i(m, x)

Q(’nv X, u) =

where the functions i,(m, x, 1) are equal to the squared
absolute values of the amplitude Mie functions.? In
view of Eqs. (14) and (20) and the equality i,(m, x, 1) =
=i(m, x, 1), the errors in the radial and angular
factors for ADA are given by the following equations:

2
E(m, x):1—M Q@1
i(m, x,1)
and
e(m, x, u):1—w. (22)
O(m, x,p)

The error of the radial factor (21) was estimated in
Ref. 2. Tt is essential that this error becomes negligibly
small for any values of the size parameter x and the
refractive index m =mn — ik in any case in the range
n<2 and k <0.5 if we use the representation of the

radial factor |A(m, x, 1)|2 derived in Refs. 14 and 15.
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Let the designation 0y, = Opa(m, 1) to stand for
the exact upper boundary of the scattering angles
determined by the inequality

le(m, x,1)|<0.1. (23)

The function 0,,,, weakly depends on the real part
n of the refractive index and is almost insensitive to
small variations of its imaginary part k. Inside the
admissible range 0 <0 < 0,,,,, the error of the angular
factor varies rather slowly, but in the range 6 > 0., it
increases quickly. The behavior of the function 0, is
illustrated in Fig. 1. Figure 2 shows the typical angular
Mie factors.

A

TTW—

0 30 60 x
Fig. 1. Function B,x =

Omax (1.33, ).

1 1 1 ]
0 1 2 3 0

Fig. 2. Angular Mie factor Q and its ADA ¢ at x = 30.

The procedure of transition from SA to ADA is
determined by Eq. (9). If the condition (9) is fulfilled,
the results obtained in SA simplify significantly. ADA
representations of optical characteristics do not include
functions depending on R; besides, ADA does not
include integral sine and cosine. The transition from SA
to ADA yields new representations (14) and (15) for
the amplitude functions. The well known van de Hulst
equation for the extinction efficiency factor?

Qext =4Re K (ip), K(w)=0.5+w " le~® + w2 (e‘w —1) (24)

follows from Egs. (12) and (13) and the optical
theorem, since
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22 Re A(m, x,1) = Re(t+8i). (25)

On the other hand, ADA is insensitive to the
degree of polarization, and one should use SA to study
the scattering phase matrix. It should be noted that the
use of the transition equation (10) allows the RGA for
Qext to be refined in the case of absorbing particles.

SA keeps the analytical structure of the exact
solution, as well as its shortwave and longwave
asymptotics,”:8:1415 and therefore it allows description
of the basic properties of light scattering by spherical
particles.

APPENDIX
Series used in ADA

Applying Egs. (8) and (9) and using the addition
theorem and differential equation for the spherical Bessel
functions, we obtain

a:6i4[4x4 “11x2 +(6x2 =0.5)c~ +1242T; +
+(24x% —4x2)Ty —40x* (T3 +T) +622t; +
+(82% =622 )ty — 2404 (15 +14)],
3:6—14[—6952 (622 =0.5)c" +1422T, +
+(40x4 —6x2)T) —56x4(T5 +T;) 612t +
+(=8xt +6x2)ty +24x4 (t5 +14)], (P1)
y:S:é[(ze ~0.5)s* +7x2D; +
+(=16x% +x2) Dy + (824 +6x2)d, +
+(—8x4 —6x2)d2 +8x3t3],

8:3—12[(6362 —-0.5)s* +7x2Dy +(~16x% +x2)D, +

+10x2d; —10x2dy +8x3t5],

where
te(p) = tr; dr(p) =dy; tp(R) =Ty dp(R)= Dy; P2)
¢~ = ciR - cip; st = siR + sip .

Taking into account Eq. (P1) and the identity
1624 (T + Ty ) = 22T, + (1625 - 222 )T, 22 (P3)
we obtain

a—B:;—2[2x2 — 346t +(8x2 —6)ty —24x2(t5 +1)|x2;

2y-8=g (20t 22 )(dy ~dy) (P4)
Similarly, we can obtain

6:x2[0.5—t1+t2—(d1 —d2)l] (PS)
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