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The problems are considered of optimal parametrization of asymmetrical 
complex operators from the space of congruent transformations.  An optimal group 
of the backscattering phase matrix parameters is proposed which is sufficient and 
nonredundant characteristic of the electromagnetic wave backscattering properties 
of an arbitrary medium and has strict physical interpretation. It is shown that 
nonreciprocal properties of the medium manifest through its backscattering phase 
matrix invariant characteristics that cause its asymmetry. 

 

The experimental data available now make it 
possible to say that in the case in which magnetic or 
electric field excited by external sources is present in the 
region of effective backscattering, the backscattering 
phase matrix (BPM) is asymmetrical.1  This fact raises a 
problem of the study of asymmetrical complex operators 
in the space of congruent transformations.  This is the 
type of transformations that describes the BPM 
representations in various polarization bases.  For the 
symmetrical matrices (describing reciprocal media), this 
transformation makes it possible to define their canonical 
(diagonal) form and to introduce sufficient and 
nonredundant group of the parameters being strictly 
interpreted that characterize the "internal" scattering 
properties of the media described by these operators.  Let 
us briefly note the physical meaning of these parameters: 
ε0 is the ellipticity angle of the BPM eigenbasis, θ0 is the 
orientation angle of the BPM eigenbasis with respect to a 

laboratory coordinate system, and λ
⋅
1 and λ

⋅
2 are the 

BPM eigenvalues. 
Ellipticity angle ε0 and orientation angle θ0 specify 

the ellipticity and orientation of the major axis of the 
polarization ellipse of electromagnetic wave incident on 
the medium under investigation (described by BPM), for 
which the power of a reflected signal at the exit from a 
reciprocal single–channel analyzer–shaper goes to its 
extreme values.  Then the reflection coefficients of two 
orthogonal waves with the ellipticity angles ε0 and – ε0, 
and orientation angles θ0 and θ0 ± π/2, respectively, are 
proportional to the BPM eigenvalues λ1 and λ2 of the 
investigated medium.  These eigenvalues specify the 
extreme values of the reflectivity in the single–channel 
single–point method. 

The single–channel single–point method is 
described by the expression: 

 

U
 ⋅

p(t) = U
⋅

0(t) h
∼
 S h , (1) 

 

where the tilde denotes transposition; U
⋅

p(t) is the 
observed reflected scalar signal, S is the medium BPM, 

U
⋅

0(t) is the scalar signal exciting a field within the 
aperture of the analyzer–shaper of a measurement 
system, and 
 

h = L ⎝⎛ ⎠⎞
1
0  (2) 

 

is the vector describing the radiation field of the 
single–channel reciprocal analyzer–shaper excited by 

the scalar signal U
⋅

0(t).  The operator L in Eq. (2) 
describes the polarization properties of the field 
analyzer–shaper and belongs to the Jones vector 
rotation group in the space of its stereographic 
projection to the Poincare sphere.  It can be 
represented in the multiplicative form as 

L = Rθ Fε = ⎝⎛ ⎠⎞
cos θ ;  $ sin θ
sin θ ;   cos θ  ⎝⎛ ⎠⎞

cos ε ;  j sin ε
j sin ε ;  cos ε  (3) 

and can be parametrized by two independent 
parameters ε and θ specifying the ellipticity and 
orientation of the vector h in Eq. (2).  For some 

ε = ± ε0 and θ = θ0 ± π/2, the observed signal U
⋅

p(t) in 
Eq. (1) goes to its extreme value (in power) 

proportional to the BPM eigenvalues λ
⋅
1 and λ

⋅
2.  Using 

Eqs. (1) and (2), we can write 

⏐U
 ⋅

p(t)⏐max
2  = U

 ⋅
0(t) (1; 0) L

∼
0 S L0 ⎝⎜

⎛
⎠⎟
⎞ 1

 
0

2

  (4) 

with 

S0 = L
∼

0 S L0 = 
⎝
⎜
⎛

⎠
⎟
⎞λ

.
1  0

0   λ
⋅
2

 , (5) 

where S0 is the representation of the symmetrical BPM 
in the polarization eigenbasis.  Detailed description and 
proof of the aforementioned statements were given in 
Refs. 2 and 3. 

Reduction of the BPM to the diagonal form by 
means of the congruent transformation given by Eq. (5) 
is impossible for the asymmetrical BPM (nonreciprocal 
media). The question of optimal parametrization of these 
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media (or their BPM) remains open (I failed to find 
papers in which such parametrization has been 
developed). 

Let us consider the general form of representation 
of the Cartesian asymmetrical BPM in various 
polarization bases.  Let us assume that in general the 
Cartesian BPM of an arbitrary medium is specified by 
the four complex numbers 

Sg =
⎝
⎜
⎛

⎠
⎟
⎞S

⋅
11  S

⋅
12

S
⋅
21  S

⋅
22

 , (6) 

and S
⋅
21≠S

⋅
12 (consequence of nonreciprocal properties of 

the media).  Let us expand the operator Sg in a system of 
the orthogonal Pauli matrices completed by the unit 
matrix 

δ0= ⎝⎛ ⎠⎞
1  0
0  1 ,  δ1=⎝⎛ ⎠⎞

1   0
0 $1 ,  δ2=⎝⎛ ⎠⎞

0  1
1  0  ,  δ3=j ⎝⎛ ⎠⎞

0  1
$1  0  . (7) 

 

Then the operator Sg takes the form 
 

Sg = A0 δ0 + A1 δ1 + A2 δ2 + A3 δ3 = ∑
i = 0

3
 
 Ai δi , (8) 

 

with the expansion coefficients 
 

Ai = 0.5 Sp {Sg δi } , (9) 
 

where Sp is the spur of the operator enclosed in the 
brackets in Eq. (9). 

Using Eqs. (6) and (7) in Eq. (8), we write down 

Sg = 0.5 {(S
⋅
11 + S

⋅
22) δ0 + (S

⋅
11 – S

⋅
22) δ1 + 

+ (S
⋅
12 + S

⋅
21) δ2 + (S

⋅
12 – S

⋅
21) δ3} . (10) 

 

It is obvious that the first three terms of Eq. (10) form 
the symmetrical operator 
 

Sg
s =

⎝⎜
⎜⎛

⎠⎟
⎟⎞S

⋅
11 0.5(S

⋅
12 + S

⋅
21)

0.5(S
⋅
12 + S

⋅
21) S

⋅
22

,  

Sg =Sg
s + Δ

⋅
 ⎝⎛ ⎠⎞

 0  1
 $ 1  0  , (11) 

where Δ⋅  = 0.5 (S
⋅
12 – S

⋅
21), and the fourth term is 

antisymmetrical operator with the weighting coefficient Δ
⋅

.  Let us find the representation of Cartesian operator Sg 
in arbitrary basis with the parameters ε and θ: 
 

Sε = L
∼
 Sg L = F

∼
ε R

∼
θ Sg Rθ Fε . (12) 

 

Using the expressions for the operators Rθ and Fε 

(see Eq. (3)), we obtain 

Sε = L
∼

 Sg L = L
∼

⎩
⎨⎧

⎭
⎬⎫Sg

s + Δ
⋅
 ⎝⎛ ⎠⎞

0  1
$1  0 L = 

= L
∼

 Sg
s L + Δ

⋅
 ⎝⎛ ⎠⎞

0  1
$1  0 , (13) 

 

since the relation 

L
∼
 ⎝⎛ ⎠⎞

0  1
 $1  0  L =⎝⎛ ⎠⎞

 0  1
 $ 1  0  → inv , (14) 

 

is valid for any L, i.e., the operator δ3 in Eq. (8) is 
invariant under rotation (transformation) specified by the 
operator L and remains unchanged in any basis of the 
representation.  We can draw a very important conclusion 
from Eq. (13):  the difference between nondiagonal 
elements of BPM is invariant for the basis parameters, is 
caused only by nonreciprocal properties of the medium, 
and is its objective characteristic. 

Since the first term in Eq. (13) describes the unitary 

congruent transformation of the symmetrical operator Sg
s , 

for some ε = ε0 and θ = θ0, the relation 
 

L
∼

0 Sg
s L0 =

⎝
⎜
⎛

⎠
⎟
⎞λ

⋅
1  0

0   λ
⋅
2

 (15) 

 

is valid and hence the asymmetrical Cartesian operator 
Sg takes the form 
 

S0 = L
∼

0 Sg L0 =
⎝
⎜
⎛

⎠
⎟
⎞λ

⋅
1  0

0   λ
⋅
2

+ Δ
⋅
 ⎝⎛ ⎠⎞

 0  1
 $ 1  0  (16) 

in the basis with the parameters ε0 and θ0 (see 
Eq. (6)). 

Representation (16) makes it possible to introduce 
the following parameters of asymmetrical BPM: ε0 and 
θ0, the parameters of the eigenbasis of the 

"symmetrical" part of BPM; λ
⋅
1 and λ

⋅
2, the eigenvalues 

of the "symmetrical" part of BPM; ξ = 
2 Δ

⋅

2 Sg2
, the 

complex coefficient of the nonreciprocity of the 
medium, where 2 2 denotes the Euclidean norm. 

Let us determine the signal U
⋅
p(t) observed in the 

single–channel single–point system on irradiation of the 
nonreciprocal medium described by the operator Sg (see 
Eq. (11).  After replacing of the operator S in Eq. (1) by 
the operator Sg, we obtain 

 

U
⋅

p(t) = U
⋅

0(t) h
∼
 Sg h  (17) 

 

and, using Eq. (2) for h, we obtain 

U
⋅

p(t) = U
⋅

0(t) (1; 0) L
∼
 ⎩
⎨⎧

⎭
⎬⎫Sg

s + Δ
⋅
 ⎝⎛ ⎠⎞

0  1
$1  0  L ⎝⎛ ⎠⎞

 1

 0
 = 

= U
⋅

0(t) (1; 0) L
∼
 Sg

s L ⎝⎛ ⎠⎞
1
0 , (18) 

since the relation 

(1; 0) L
∼
 ⎝⎛ ⎠⎞

0  1
$1  0 L ⎝⎛ ⎠⎞

1
0  = 0  (19) 

is valid for any L. 
Thus, signal (18) observed in the single–channel 

system in the case of the nonreciprocal medium depends 
only on the "symmetrical" part of BPM and goes to its 
extreme (in power) values when the medium is 
irradiated by the eigenstates of polarization of its 
"symmetrical" part, i.e., by the field described by the 
vector 

h0 = L0 ⎝⎛ ⎠⎞
1
0  = Rθ0

 Fε0 ⎝⎛ ⎠⎞
1
0 , (20) 
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where ε0 and θ0 are the parameters of the eigenbasis of 
the "symmetrical" part of BPM.  It is the reason why 
the parameters ε0, θ0, λ1, and λ2 specified for 
asymmetrical operator (11) have practically the same 
meaning that the corresponding operators of the 
symmetrical BPM considered above. 

Physical meaning of the nonreciprocity parameter 
ξ of the medium is the following. Obviously, the square 
norm of the operator Sg in Eq. (11) is equal to the sum 
of the square norms of its symmetrical and 
asymmetrical parts, because 

 

2Sg22 = ∑
i = 1
j = 1

2

 
 ⏐S

⋅
ij⏐2= ⏐S

⋅
11⏐2

 + ⏐S
⋅
22⏐2 + ⏐S

⋅
12⏐2 + ⏐S

⋅
21⏐2 = 

 

= ⏐S
⋅
11⏐2 + ⏐S

⋅
22⏐2 + 0.5⏐S

⋅
12+S

⋅
21⏐2+ 0.5⏐(S

⋅
12–S

⋅
21)⏐2, (21) 

 
and since the first three terms in the right–hand side of 

Eq. (21) specify the square norm of the operator Sg
s 

(see Eq. (11)) and the fourth term is the square norm 
of the antisymmetrical operator in the right–hand side 
of Eq. (11), we can write 
 

2Sg22 = 2Sg
s 22 + 2 ⏐Δ

⋅
⏐2 , (22) 

 

where Δ
⋅
 = 0.5 (S

⋅
12 – S

⋅
21). It follows from Eq. (22) 

that the ratio of the BPM square norm to its 
asymmetrical part is equal to  
 

2 ⏐Δ
⋅
⏐2

 2Sg22
 = ⏐ξ⏐2 ,  (23) 

and hence the absolute value of the nonreciprocity 
coefficient of the medium carries the information about 
the relation between the reciprocal and nonreciprocal 
parts of the total effective scattering cross section. 
Obviously, the nonreciprocity coefficient is equal to 
zero for all reciprocal media, and the absolute value of 
ξ is within the  interval (0, 1) for an arbitrary medium.  
The argument of the coefficient ξ determines the 
difference between the absolute phases of the operators 
of symmetrical and asymmetrical parts of BPM and, 
evidently, is indicative of the separation of its 
reciprocal and nonreciprocal parts in space, like in the 
case in which the phase difference between the 

eigenvalues λ
⋅
1 and λ

⋅
2 determines the separation of the 

model elements (for example, vibrators in the two–
vibrator model of scatterer2) of a medium along the 
line of sight. 

Let us note in conclusion that the proposed 
parametrization of BPM of an arbitrary medium is the 
optimal description of its "internal" scattering 
properties.  The optimum is ensured by sufficient and 
nonredundant nature of these parameters as well as by 
the strict physical interpretation of each of them. 
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