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The small-angle modification of the method of spherical harmonics is generalized for the case of a
point unidirectional (PU) light source in an infinite anisotropically scattering medium. Within the
framework of this generalization, the vector radiative transfer equation is solved for an unpolarized PU
source. Equations describing the state of polarization of the scattered radiation are reduced to the form
convenient for use in engineering practice. The equations obtained are analyzed, and it is shown that the
minimum of polarization coincides with the direction of sighting at the maximum of radiance, that

corresponds to the Umov law.

The problem of describing polarized radiation
propagation through a turbid medium can be reduced to
determination of the Green’s function of the vector
radiative transfer equation (VRTE).!:2 Physically, this
means irradiation of the medium with a point
unidirectional (PU) source. This paper is devoted to
solution of this problem. It is proposed to solve it based
on the generalization, for the case of polarization, of
the existing small-angle solution of the scalar radiative
transfer equation. As a solution, we took the small-
angle modification of the method of spherical harmonics
(MSH)3+4 because it is most general among other small-
angle methods.3

To describe polarization, we will use the CP
representation:6:
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where (I, Q, U, V) are the Stokes parameters.!
Let a PU source of unpolarized radiation emitted

along the direction q be located at some point of an
infinite homogeneous medium (the cap A indicates the
unit vector), and it is required to determine the column

vector of polarization parameters L(r, q, I) in the

direction T at the point spaced by r from the source.
Then the VRTE boundary-value problem can be written
in the form7:8:
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where n = (ﬁ, ) n= (i, ) e=n-vy, y is the
dihedral angle between the planes q x r and I x rr
determines the direction from the source to the

observation point; Ly = (0; 0.5; 0.5; 0)T; € and & are the

> A N A A
extinction and scattering coefficients; R(I x I' - r x I)
is the matrix of transformation of the vector parameter
at rotation of the reference plane; x and y' are

the dihedral angles between the planes I x i’, £ x I and
T x i’, I x i', respectively; 0 is the scattering phase

matrix. The plane r x I is taken as a reference plane.

The problem is solved based on the method of
spherical harmonics. Therefore, let us present the solution
as the following series:
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are, respectively, the generalized Legendre functions
and the associated Legendre functions.? The boundary
conditions can be reduced to the form

lim Cf,(r) = Lo/ (2nr?). (4)
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Resolve the scattering matrix as[]
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where y = (ﬁ’) and the indices r and s take the values
-2, =0, +0, +2. Multiply the equation by Y A(HX

0,(n), e ™ and integrate over the entire range of
variability of the arguments. Using equations for the
generalized Legendre functions®:19 similarly to the
scalar case,!! we obtain the infinite system of connected

differential MSH equations for the coefficients CZ;,(r):
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and the successively repeating indices mean their product.
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Radiation scattering in actual media occurs for
particles much larger than the radiation wavelength, thus
leading to the strongly anisotropic scattering phase
function. This circumstance causes strong angular
dependence of the brightness body. Therefore, the
brightness spectrum weakly depends on the number £;
it is a smooth, monotonically decreasing function. The
angular dependence of polarization parameters is not that
strong, but the spectrum here contains a large number
of terms,!2 and this defines the dominant effect of the
terms with p, k& >>1 in the series (3). These properties
of the spectrum allow us to redefine the connection
between Cj,(r) and Cjiq ,(r) and to break the obtained
system of equations. For this purpose, the expansion
coefficients are assumed continuously depending on their
indices and the resolution34

Cn(r, k +1, p) = C(r, k, p) + 3C"(r, k, p) /(8k) (8)

is conducted.

However, for a PU source these assumptions do
not lead to an analytically solvable equation. Therefore,
assume additionally that the dependence of polarization
parameters on the zenith angle is stronger than on the
azimuth angle: p, k >>|m|, that is, the brightness body is
more anisotropic than asymmetric. This allows us to
assume the following:

Zzl ~ kT, tp ~ k, 8 T,
o , 9
0, " ap, =~ k +m.
Introduce the function
cn(k, p) = Yn(k, p) /72 10)

Substituting these equations into Eq. (6), we obtain
the equation
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Define the new function f(r, k, p) so that the sought

. m . . . . .
functions Y are the coefficients of its expansion into
the Fourier series:

f(r, k, p) = Y Y"(r, k, p) ™, (12)

m=—c0

the vectors k and p are equal to the indices k& and p in
the absolute values and lie in the same plane, and v is
the angle between them.

Multiply Eq. (11) by ¢ and sum it up over m from
—oo to 0. We obtain

oG, k, p) 1
T+7(k+p, Vk) f(r, k, p) =
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= —e(1 — AX}) f(r, k, p). (13)

Solving this equation similarly to the scalar case!!
by the method of integration along a characteristic,
we have

f(r, k, p) =

1
:iexp {—sr+crf?c)((k+p)§—k|) d§:| Lo, (14)

0

that leads to the equation
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Equations (3) and (15) determine the polarization
parameters of the light field generated by the unpolarized
PU source in the infinite medium. At small sighting and
emission angles, the obtained equations lead to the
solution, which can be obtained from the development
of the approach from Refs. 13—15.

These equations imply calculation of the double
integral and summation over three variables. Simplify
the solution obtained by accepting some assumptions.

Consider relatively large optical depths, at which
the angular dependences of the polarization parameters
are the functions smoother than the scattering phase
matrix. Correspondingly, the spectrum of the scattering
phase matrix is smoother than that of the vector
parameter. Then, within the range, where the spectrum
of the vector parameter is nonzero, the spectrum of the
scattering matrix varies only slightly, and the
consideration can be restricted to a small number of
terms when expanding it into the Taylor series. Consider
the class of the scattering phase functions with the zero
first derivative in the spectrum:
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where 0 < P, Q <1 determine the appearance of the
linear and circular polarizations in a scattering event; a
is a parameter of the scattering phase function. We can
show that the spectrum (5) of the scattering phase matrix
in the form4:12
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roughly satisfies this expansion, if the spectrum x; of
the scattering phase function x(p) at expansion into a
Taylor series over the index has no first derivative.
Assume that the parameter @ has a rather large value, at
which Eq. (16), as well as the approximations (8) and
(9) are acceptable.

The well-known equation for the matrix exponent is!6
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where ( )V stands for the matrix of algebraic adjuncts,

and ¢; are solutions of the equation det((;? - I?) =0.
Our task is to compile the series (3) with the
coefficients (15). The spectrum of the sought solution is
smooth, and we are interested in large k and p and small
observation angles, therefore the sums can be replaced
by integrals, and the generalized Legendre functions
can be replaced by Bessel functions by analogy with the
well-known relation between the Hankel transform and
expansion into a series over spherical functions.Y Then
the series (3) corresponds to the integral transformation

L(r, q, I):ﬁj’j‘dzkx

o 21
x ffpdpdg exp(ikq + ipD) 0(&) L(r, k, p), (19)
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where cost = (p i); cost, = (k p); 0(&) = Diag (exp(2i£);
1 1; exp(-2i8)); q =1 - ¢ T=1 - L.

Substitute Egs. (16), (18), and (20) into Eq. (19).
The integral (19) can be calculated exactly. The final
equations have the form
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Equations (21) and (22) are VRTE solutions. Taking

into account that

2
8(x) = lim 1 exp (— x—2>, (23)
T c

c->0C

we can show that the solution obtained satisfies the
boundary conditions (2) written in the form

A A L A A A A
L, Dl =38G-DsGE-q. )

Expansion of the spectrum of scattering phase
function into the series similar to Eq. (16) for the scalar
radiative transfer equation was proposed in Ref. 15.

Let us analyze the equation obtained. It falls in
the class of diffusion approximations (DA), what is
confirmed by the impossibility of expanding it into a
series over the number of scattering events (powers of
A). From the equality L.y = L_ it follows that V =0
at small emission and sighting angles and the processes
connected with the appearance of circular polarization
are weak. In the case of sighting at the source,
I=q=0 and M(A) =0 along the emission axis, and
when polarization is absent, what corresponds to the
symmetry of the problem. In this case, M(L) can be
determined accurate to the factor of exp(2ip)

describing rotation of the reference plane Ix?tin the
CP representation,” since its position in this case is not
determined.

The brightness from solution (21) is maximum, when

2+ @2+ Iq = min & 5 — 3¢ - 13t - ) =

= min & 1M 3¢ - q. (25)

This result is already known.!> The appearance of
maximum under condition (25) is the consequence of
multiple scattering, since both the first and the second
orders of scattering have maximum in the case of
sighting at the source.
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Determine the degree of polarization as

R=4/0%2+ U2+ V2/]. For simplicity, consider the
case P =1, ¢ = 0. Then
M) = L(ky) =0, Q=V=0,

1ol Lo+Ll, MO er-1-y

R

I Liyg+Ly LGy 2y
a?(2l — q)?
Y hor(1+ P) (26)

The minimum of the function (26) equal to zero
takes place at 2/ = ¢, what is equivalent to the condition
(25) at small angles. The appearance of the point with
zero polarization coinciding with the point of maximum
brightness is the result of multiple scattering that
corresponds to the Umov law!7: the degree of polarization
of the radiation reflected by a plane layer of a turbid
medium decreases with the increase of the reflection
coefficient.

Analysis of the function (26) shows that it has
only one extreme. Physically, this seems incorrect: at
large angles the degree of polarization should decrease
again, so one maximum more should exist. Consequently,
the obtained solutions are valid at small observation
and emission angles.

Now consider how the obtained VRTE solution is
connected with the known solutions of the same order
of accuracy. For this purpose, express the field generated
by a plane unidirectional source of unpolarized radiation
incident normally onto an infinite homogeneous layer of
turbid medium as:

Lz, 12) = f RO LGz, o, I¢, ) d2p,

A r
r={p,z}, r=7, Q7N
where the azimuth angle ¢ is measured as rotation
relative the vector r; yx is the angle of rotation of the

reference plane Tt x I to the plane z x I
Let us integrate over the solid angle

Mmoo 122 2 2p+12k+1 [(p—m)!
L(z, Iz) =5~ XY YimT 7\ ,(p s vE
p=0 k=0 m=—o0

N o ) 2 dr
m m 1me ~m rrdr
iﬁRQ)%Qﬂ%Gﬂe Cip ") 28
T

For further transformations, accept the following
small-angle assumptions

rx~z, (r,2)~1, Cj(r) r2dr/(t,2) ~ 22 C(2)dr,

and, taking into account that backscattering is small,
pass from the integral over only the hemisphere to the
integral over the full solid angle. This transforms
Eq. (28) into the form
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byt 3 3 3 g 2pti2kEt [ om)!
L(z, IZ):Z >0 2 im 2 2 (p+m)!><
p=0 k=0 m=—o0

x Cpp(2) 22 13()() ?Zl(u) PZZ(T]) ™ dr. (29)

Using the addition formula for the generalized
spherical functions, their orthogonality, and connection
with the associated Legendre functions, the integral
over the solid angle can be calculated and Eq. (29)
takes the form

A °°2k+1<—>0/\/\ o m
L(z, Iz) = Y . Yp(Iz) Y im Cp(z) z2. (30)
k=0

m=—w

Substitution of solution (15) allows us to calculate
the internal sum over m in Eq. (30):

3 im CP(2) 22 = exp{—er(1 — AXp)}, (31)

m=—ow

what completely corresponds to the results obtained in
Ref. 4.

Figures 1-2 compare the solutions obtained in
MSH and DA [Egs. (16)—(22)] as applied to a plane
unidirectional source with the results of statistical
modeling. It is worth noting the high accuracy of
MSH, while DA is unable to describe even
qualitatively the brightness body at any depth, but
describes the degree of polarization with practically
acceptable accuracy at the optical depth T > 10.

1.5

Sighting angle 0, deg

e Monte Carlo; MSH; —-—-— DA

Fig. 1. Distribution of brightness L inside a layer of turbid
medium; figures at the curves mean the optical depth. Medium
parameters: A = 0.8, Heney—Greenstein scattering  phase
function with g = 0.97.
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Sighting angle 0, deg

e Monte Carlo; MSH; —-—-— DA
Fig. 2. Degree of polarization R inside a layer of a turbid
medium; figures at the curves mean the optical depth. Medium
parameters: A = 0.8, Heney—Greenstein scattering phase
function with g = 0.97.
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