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When monitoring atmospheric pollutants, air is sampled during a finite time. The measured 

pollutant concentrations are averaged over the sampling period. The spread of atmospheric pollutants 
occurs in a turbulent medium, therefore, the measured concentration values are random. This work 
considers the problem of a choice of the sampling time to provide for pollutant concentration values 
with preset errors. 

 
The air sampling is one of the primary 

techniques in atmospheric monitoring. Since it takes 
some time T > 0, the measured concentration values 
CT are averaged over the observation period T: 
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where C(t) is the pollutant concentration at some 
moment t. Atmospheric pollution propagates through 
a turbulent medium. Therefore, C and CT are random 
quantities. In this connection, to make sampling 
reliable and statistically distributed is of importance. 
In this paper, we consider the problem of a choice of 
some appropriate sampling time providing for 
obtaining pollutant concentrations at a given error. 
 Consider a stationary process of the pollutant 
transport. In this case, the pollutant concentration 

expectation is independent of time: const.Ñ =  
Applying the averaging over the statistical ensemble 
to Eq. (1), we have 
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The estimate of the expectation of the measured 

pollutant concentration (1) is unbiased, ,TÑ C=  and 

its variance is determined by the relation1 
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where B(ξ) is the correlation function of fluctuations 
of atmospheric pollutant concentration, the 
expression for which was derived earlier2 based on 
the exact analytical solution of the Fokker–Planck–
Kolmogorov equation for the transitional 
concentration probability density: 
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where σ2 is the pollutant concentration variance; τ is 
the Eulerian time scale of the concentration variance. 

According to Eq. (4), the expression for the measured 
concentration variance is the following: 
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It was shown in Ref. 3 that the best estimates of 

the measured concentration expectation optTÑ  and 

valiances 2
optTσ are  
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At a sufficiently large sampling time (T ≥ τ), 
estimates (5) and (7) coincide. In particular, with 
this requirement being fulfilled, the variance of the 
measured concentration of CT can be found as  
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Table 1 gives some values of 2

Tσ versus T calculated 

by Eq. (8). 
 

Table 1. Variance of measured pollutant concentrations 
versus sampling time 

2 2
/Tσ σ 0.1 0.05 0.01 

T/τ 20 40 200 
 

There is one more circumstance to be taken into 
account when choosing the sampling time. It is also 
determined by the statistical nature of the pollution 
propagation process and is connected with the effect 
of the concentration alternation, i.e., the probability 
of observation of its zero values. Thus, prior to 
sampling, we must estimate the probability of the 
zero concentration. The concentration distribution 
function for a propagating pollutant has the form4: 
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where erf stands for the probability integral; β is the 
second parameter of the distribution function. The 
expression for CT coincides with Eq. (9) accurately 
to designations.4 The function is the exact analytical 
solution of the Fokker–Plank–Kolmogorov equation 
and is derived in the framework of assumptions on 
the semiempirical approach to the description of 
atmospheric pollution propagation. Function (9) is 
justified by a cycle of laboratory experiments with a 
wind tunnel and corresponds to classical properties of 
asymptotics of the concentration distribution 
functions in terms of the turbulent combustion 
theory.4 It follows from Eq. (9) that the probability 
of zero concentration for a pollutant is 
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To find β, it is convenient to use the relation4 
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When T ≥ τ, from Eqs. (8), (10), and (11) the 
following expression is derived for the probability of 
zero concentration: 
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Figure 1 presents F(0) as the function of T/τ 
for some intensity values of the pollutant 

concentration fluctuations .I Ñ= σ  
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Fig. 1. The characteristic F(0) as the function of T/τ. 
Curves 1–4 correspond to the values I = 0.25; 0.5; 1; and 2. 

Thus, a longer sampling time not only decreases 
the variance, but also reduces the probability of zero 
concentrations. As is seen, this probability can be 
rather significant. 

The empirical relation for the Eulerian time 
scale of the wind velocity fluctuation τu based on the 
analysis of the time series of the parameter, recorded 
with the acoustic anemometer in the surface 
atmospheric layer is given in Ref. 4: 

 (45 8) ,
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z
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where z is the height above the underlying surface, 

m; U  is the mean modulus of the wind velocity, 
m/s. A similar expression was used in Ref. 5 to 
determine the Lagrangian time scale of the 
concentration fluctuations. Assume that Eq. (13) is 
applicable to estimates of the Eulerian time scale τ as 
well. 

Now, as an example, consider the calculation of 
the Eulerian time scale by Eq. (13) for Novosibirsk 
city. The wind velocity fields for this region were 
found through the numerical–analytical model.6 In 
the first variant of calculations we set meteorological 
conditions typical for the region at 3 a.m., i.e., 
western wind of 1 m/s at the vane height at the left 
boundary of the considered area. The second variant 
assumed wind velocity of 5 m/s at 3 p.m. 

Figure 2 shows isolines of the τ calculated 
values for both variants at a height of 10 m above 
the surface. 

 

 
Fig. 2. Isolines for τ calculated for 3 a.m. (à) and  
3 p.m. (b) of the local time. Isolines 1–3 correspond to 
τ = 20, 40, and 60 s (à); 300, 600, and 1200 s (b). 

As is seen, the characteristic time scales of 
fluctuations for the night and daytime conditions 
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differ substantially. The isoline fields have a complex 
structure due to different types of the underlying 
surface within the considered domain. Since daytime 
values of τ  are higher than the night ones, the period 
of the correct daytime sampling must be much longer 
than the night one. 

For the above meteorological conditions we 
estimated the probability of the pollutant zero 
concentration. To do this, in a point with coordinates 
x0 = 5 km, y0 = 10 km, z0 = 50 m we positioned a 
stationary point source of pollution with the power 
Q0 = 1010 relative units and a particle size of 10 µm 

in diameter (the cross in Fig. 2). The values for Ñ  

and 2
σ  were found by solving a semi-empirical 

equation for turbulent diffusion and the equation for 
the concentration variance,7,8 respectively. The 
turbulent diffusion coefficients were set according to 
the algebraic model like in Ref. 9. 

Table 2 gives the examples of F(0) calculation 
for several pollutant concentration values at several 
points in the plane z = 10 m. As is seen, the greater 
the concentration fluctuation intensity, the higher 
the probability of zero concentrations. Therefore, at 
points with strong fluctuations, concentration 
measurements must cover a much longer period than 
at the points with weak fluctuations. 

 

Table 2. Zero concentration probability for some points 
of the area  

*Point coordinates x; 
y, km; 

in the plane z = 10 m 
I C= σ  (0) 1 erf

C
F

⎛ ⎞
= − ⎜ ⎟
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Variant 1:   
11.25; 10.25 0.1 0 
15.00; 10.75 0.495 0.045 
17.50; 15.50 2 0.746 

Variant 2:   
8.25; 10.75 0.108 0 
5.75; 11.00 0.492 0.043 
12.50; 8.25 2.01 0.747 

* Indicated as circles in Fig. 2. 

 

A similar analysis can be performed for the case 
of nonstationary concentration fields of the 

transported pollutant, when ( ).C C t=  In this case,  
 

a quasi-stationary approximation for the correlation 
function of the concentration variance4 can be used: 
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which is consistent with the semi-empirical approach 
to the description of the atmospheric pollution 
propagation process.4 In this case, the expression for 
the concentration variance (3) takes the form 
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Thus, when monitoring the atmospheric 
pollution from some known source under typical 
meteorological parameters, it is possible to estimate 
the sampling errors connected with statistics of the 
process of atmospheric pollution transport. 
Generally, when the pollution source cannot be 
correctly allocated, the estimate of the error in 
pollutant concentration measurements becomes a 
more complicated problem.  
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