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The IR–radiation transfer through the broken clouds is considered. The 
investigation concerned the dependence of variance and correlation function of 
thermal radiation on the parameters of cloud field and observation conditions. The 
effect of light scattering on the second moments of the brightness field is estimated.  

 
The investigation of the relationship between the 

statistical parameters of cloudiness and radiation fields is 
urgently needed for solving the wide range of scientific and 
applied problems. The dependences of the mean value of the 
long–wave radiation intensity on the parameters of the 
cloud field and on the observation conditions have been 
studied with an account of multiple scattering effects1 and 
without them.2 The equations for second moment of long–
wave radiation intensity have been obtained and solved in 
Ref. 3. It has been shown in Ref. 1 that if the viewing 
angle ξ < 60–70° while the optical depth of cumulus clouds 
τ > 15–20 then in estimating the mean value of the 
intensity one can neglect scattering and treat the cumulus 
clouds as absolutely black emitters. In what follows we will 
call the clouds, in which the scattering is neglected, black 
clouds. 

The purpose of this paper is to investigate the 
dependence of the variance and correlation function of the 
long–wave radiation intensity on the optical–geometric 
parameters of the cloud field and the observation conditions 
as well as to determine the limits of applicability of the 
black–cloud approximation in calculating the second 
moments of the brightness fields. 

The model and solution technique. The statistically 
uniform and anisotropic model of the cloud field κ(r) is 
based on the Poisson point fluxes on the straight lines.4 The 
cloud amount N, thickness H and the cloud horizontal size 
D, which determines the correlation function of cloud 
fields, are the input parameters of the model. 

We use the notation Dϕ(x), Di(x), Kϕ(x1
, x

2
), and 

Ki(x1
, x

2
) for variances and normalized correlation 

functions of the intensity of direct ϕ(x) and diffuse i(x) 
long–wave radiation,3 while the notation D

0
(x) and 

K
0
(x

1
, x

2
) – for the statistical characteristics of the 

radiation intensity of the black clouds (λ = 0), where 
x = (r, ω) is the point in the phase space X of the 
coordinates and directions ω = (a, b, c) and λ is the 
quantum survival probability. We denote by Vϕ, i(x1

, x
2
) 

and Vi, ϕ(x1
, x

2
) the cross–correlation functions of the 

intensity of direct and diffuse radiation. 
To estimate the values Di(x), Ki(x1

, x
2
), and 

Vi, ϕ(x1
, x

2
), the algorithms for the statistical simulation 

are developed in Ref. 3, while for the calculation of the 
values Dϕ(x), D

0
(x), Kϕ(x1

, x
2
), K

0
(x

1
, x

2
), and 

Vϕ, i(x1
, x

2
) the formulas have been obtained 

 

Dϕ(x) = (Iz(ω) – (1 – λ)Bc)2 Dj(x) ; (1) 

 

D
0
(x) = (Iz(ω) – Bc)2 Dj(x) ; (2) 

 

Vϕ, i(x1
, x

2
) = (Iz(ω) – (1 – λ)Bc) Vj, i(x1

, x
2
) ; (3) 

 
Kϕ(x1

, x
2
) = K

0
(x

1
, x

2
) = Kj(x1

, x
2
) , (4) 

 

where Iz(ω) is the intensity of the radiation from the 

external sources located at the cloud field boundaries, 
Bc = B(Tc) is the Planck function at the temperature of the 

isothermal clouds Tc, Dj(x) and Kj(x1
, x

2
) are the 

statistical characteristics of the function j(x) which have 
been studied in detail in Ref. 4, Vj, i(x1

, x
2
) is the cross–

correlation function for j(x) and i(x) (Ref. 5). The function 

j (x) = exp ( )– 
σ

⎢ c ⎢ ⌡⌠
Ez

k(r′) dh may be treated as the 

random intensity of the direct radiation at the point r 
provided that the unidirectional source of unit power 
radiating in the direction ω, is located at the point 

r(0) = (x(0), y(0), ξ) = r – 
z – ξ

c  ω, where ξ = 0 at c > 0 and 

ξ = H at c < 0, σ is the extinction coefficient, and 
Ez = (0, z) at c > 0 and Ez = (H, z) at c < 0.  

The variance DI(x) and the normalized correlation 

function KI(x1
, x

2
) of the total radiation intensity 

I(x) = ϕ(x) + i(x) have the forms 
 

DI(x) = Dϕ(x) + Di(x) + Vi, ϕ(x) + Vϕ, i(x) , (5) 
 

KI(x1
, x

2
) = 

1
DI(x) {Dϕ(x) Kϕ(x1

, x
2
) + 

 

+ Di(x) Ki(x1
, x

2
) + Vi, ϕ(x1

, x
2
) + Vϕ, i(x1

, x
2
)} . (6) 

 

Hereafter for simplicity we will omit the argument of 
variances and correlation functions. 

If the receivers are oriented in the zenith direction, i.e., 
ω

1
 = ω

2
 = ω⊥ = (0, 0, 1) or in the nadir direction (ω⊥ = (0, 0, –1)) 

Eqs. (1)–(6) are substantially simplified. In this particular 
case4, 5 
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Dj = N(1 – N) (1 – e–τ)2 , Kj = e–A(Δx + Δy) , (7) 

 

Vj, i = (N – 1) < i(z∼, ω⊥) > (1 – e–τ) e–A(Δx + Δy) , (8) 

 
where A ∼ 1/D, Δx = ⏐x

1
 – x

2
⏐, Δy = ⏐y

1
 – y

2
⏐, τ is the 

cloud optical depth, and z
∼
 = H at c > 0 and z

∼
 = 0 at c < 0. 

We now consider the statistical characteristics of diffuse 
radiation brightness Di, Ki, and Vi, ϕ. It is obvious from 

formulas (33) and (34) (see Ref. 3) that at ω
1
 = ω

2
 = ω⊥ 

 

⏐x
0
 – x

2
⏐ = Δx , ⏐y

0
 – y

2
⏐ = Δy ,   (9) 

 
where r

0
 = (x

0
, y

0
, z

0
) is the point of a first collision. 

According to Ref. 5 at A(ω⊥) = A(|a| + |b|) = 0 we have 

 

<i(z
∼
, ω⊥)> = Nu(z

∼
, ω⊥) = <χ(r) i(r, ω⊥)> . (10) 

 
Accounting for Eqs. (9) and (10), the sought–after 
correlations may be represented as follows: 
 

DiKi = ((1 – N) <i(z
∼
, ω⊥)>2/N) e–A(Δx + Δy) , (11) 

 

Vi, ϕ = (1 – N) ((1 – λ) Bc – Iz(ω⊥)) × 
 

× <i(z
∼
, ω⊥)> (1 – e–τ) e–A(Δx + Δy) . (12) 

 
It follows from formulas (3), (4), and (7)–(12) that the 
normalized correlation functions Kϕ, Ki, Vi, ϕ, and Vϕ, i 

coincide with the correlation function of the probability 
that the zenith (nadir) direction is covered with clouds 
 

K
∼
 = e–A(Δx + Δy) , (13) 

 
while the variances of brightness have the form: 
 

D
0
 = N(1 – N)(Iz(ω⊥) – Bc)

2(1 – e–τ)2 , (14) 

 

Dϕ = N(1 – N)(Iz(ω⊥) – (1 – λ)Bc)
2(1 – e–τ)2 , (15) 

 

Di = (1 – N) <i(z
∼
, ω⊥)>2/N , (16) 

 

Vi, ϕ = Vϕ, i = (1 – N) ((1 – λ) Bc – Iz(ω⊥)) × 
 

× <i(z
∼
, ω⊥)> (1 – e–τ) . (17) 

 

DI = N(1 – N)(Iz(ω⊥) – 

 

– (α<i(z
∼
, ω⊥)> + (1 – λ)Bc))

2 (1 – e–τ)2 , (18) 

 

where α = 1/(N (1 – e–τ)). 
In Refs. 4 and 5 it has been shown that in the 

asymptotic case as γ = H/D → 0 the correlation functions 
tends toward unity 
 

Dj = N(1 – N) (1 – e–τ/⎮c⎮)2 , (19) 

 

<i(z
∼
, ω)> = Ni

0,s(z
∼
, ω) , (20) 

 
where i

0, s(z, ω) is the intensity of scattered radiation in a 

continuous cloud layer. It is not difficult to show using 
Eqs. (19) and (20) that formulas (14)–(18) may be 
employed for calculation of the variances of brightness of 
thermal radiation, modulated by the stratified clouds 
(γ n 1), partially covering the sky, for various viewing 
angles by substituting τ/|c| for τ and ω for ω⊥. 

The calculated results. The absorption by the 
atmospheric gases in the atmospheric transparency window 
8–13 μm is well known to be very weak,6 and for this 
reason we will account for the interaction only between the 
radiation and cloud matter within the cloud layer in this 
spectral range. If scattering in the atmosphere above and 
below the cloud is neglected, then the absorption and 
emission of radiation by the aerosol and atmospheric gases 
may be easily taken into account with the boundary 
conditions (on the function Iz(ω)). It is obvious from the 

above assumptions that aerosols and gases have no effect on 
the qualitative dependence of statistical characteristics of 
long–wave radiation intensity on the parameters of the 
problem, therefore for simplicity we will neglect the 
influence of the atmosphere beyond the cloud on the 
thermal radiation transfer. The underlying surface is 
absolutely black emitter at the temperature Ts = 290 K. It 

follows from the definition of the function Iz(ω) that it 

equals to Bs at the lower boundary of a cloud layer at 

c > 0, while it equals to zero at the upper boundary at 
c < 0, where Bs = B(Ts). The isothermal clouds at the 

temperature Tc = 255 K have the thickness H = 1 km and the 

horizontal size D = 0.5 km. These values of Ts and Tc are typical 

of mean temperature of the underlying surface and of the middle 
clouds in summer over the territory of the USSR (see Ref. 7). 
The scattering phase function and the single–scattering albedo 
were calculated based on the Mie theory at a wavelength of 
10 μm and for C1 cloud.8 It should be noted that at these 
temperatures the Planck function of the underlying surface 
differs almost by a factor of two from that of clouds. The 
azimuth angle counted off from the XOZ plane was taken to be 
zero, the other parameters are given in figure captions. 

The effects of the cloud amount N and of the zenith 

viewing angle ξ on the variance of intensity of the upwelling (↑) 

and downwelling (↓) radiation DI and its components (see 

Eq. (5)) are illustrated in Fig. 1. Here and in Figs. 2 and 3 the 

half–sum (Vi, ϕ + Vϕ, i)/2, denoted for convenience by V
∼

i, ϕ, is 

shown. 
Let us consider the statistical characteristics of brightness 

in the directions of zenith and nadir. According to Eqs. (14) and 
(15) D

0
 and Dϕ are independent of the parameter γ, they are 

symmetric about N = 0.5, and for cumulus clouds they weakly 
depend on τ. Without temperature inversion and at λ ≠ 0 it 

follows from Eqs. (8) and (9) that D↑
0
 < D↑

ϕ while D↓
0
 > D↓

ϕ, 

therefore the inequality D↓
0
/D↓

0
 < D↑

ϕ/D↓
ϕ is valid in any case. For 

fixed temperatures of clouds and underlying surface and at 

λ = 0.638 the ratio D↑
0
/D↓

0
 is equal approximately to unity while 

the ratio D↑
ϕ/D↓

ϕ is of the order of 20 (Fig. 1). 
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FIG. 1. Variances of the upwelling (a) and downwelling (b) radiations as functions of the zenith viewing angle and 
of the cloud amount for σ = 5 km–1. Here and in Fig. 2 the solid lines refer to ξ = 0° and the dashed lines refer to 

ξ = 60°. 1) Dϕ 
; 2) Di ; 3) V

~
i, j ; 4) DI ; and 5) D

0 
. 

 

The dependence of variances Di, Vi, ϕ, and DI on the 

parameters of cloud field is more complicated because these 
statistical characteristics are the explicit functions of N and τ 
(see Eqs. (16)–(18) and depend implicitly on N, τ, and the 

parameter γ via the mean intensity <i(z
∼
, ω⊥)>. The linearity of 

the transfer equation makes it possible to represent <i(z
∼
, ω⊥)> as 

the sum <i(z
∼
, ω⊥)> = is(z

∼
, ω⊥) + ic(z

∼
, ω⊥), where is and ic 

correspond to the mean intensity of diffuse radiation from clouds 
and from the underlying surface. The statistical uniformity of 
cloud field, the constancy of optical characteristics, and the 

isothermality of clouds result in the equality of i↑c
(H, ω⊥) = i↓c(0, ω⊥), therefore the differences between the 

variances of upwelling and downwelling radiations are 
caused by warm underlying surface contributing differently 

to i↓s(H, ω⊥) and i↓s(0, ω⊥). 

The radiation of the underlying surface exiting through 
the cloud top via a process of multiple scattering vanishes 
as N→0 while for optically thick clouds it happens even as  

N→1. This explains the nonmonotonic character of the 

dependence of i↑s(H, ω⊥) on the cloud amount. With 

increase of N the radiation emitted by the underlying 
surface and then reflected from the cloud layer also 

increases, and as a result, i↓s(0, ω⊥) is the monotonically 

increasing function of N. The fact that the qualitative 

character of the dependence of i↑s(H, ω⊥) on N differs from 

that of i↓s(0, ω⊥) results in the shift of the maximum values 

of variance Di and cross–correlation function V
∼

i, ϕ for 

upwelling and downwelling radiations (Figs. 1 and 2). For 
small and intermediate N and fixed parameters of the 
problem the strong elongation of the scattering phase 

function in the forward direction results in the fact that i↑s
(H, ω⊥) is larger than i↓s(0, ω⊥), and hence, D↑

i  > D
↓
i and 

⏐V
∼ ↑

i , ϕ| > V
∼ ↓

i , ϕ. With increase of the cloud optical depth i↑s

(0, ω⊥) increases, as a result, D↓
i  and V

~ ↓
i , ϕ increase too, 

while for the upwelling radiation the dependence is inverse. 
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a 

 
b 

FIG. 2. The effects of the zenith observation angle and of the cloud amount on the variance of the upwelling (a) and 
downwelling (b) radiation for σ = 40 km–1. 

 

The radiation coming from the warm underlying 
surface can entry and exit not only through the cloud 
bottom (top) but also through the cloud sides. The strong 
anisotropy of the scattering phase function and the presence 
of absorption cause the sides to play an important role in 

the formation of i↑i
(↓)(z

~
, ω⊥) because the radiation exiting and 

entering through them undergoes, on the average, fewer 
scattering events than the radiation exiting or entering through 

its bottom (top). This is the reason for i↑s(H, ω⊥) and therefore 

for D↑
i to increase, while for i↓s(0, ω⊥) and D↓

i to decrease with 

increase of the parameter γ (for instance, H is fixed and D 
decreases). According to Eq. (17) and prescribed boundary 

conditions, V
∼ ↑

i, ϕ < 0 for the upwelling radiation and V
∼ ↑

i, ϕ > 0 

for the downwelling one. The negative values of V
∼ ↓

i, ϕ are the 

result of the fact that with an increase of N, the intensity of the 

direct radiation ϕ↑, on the average, decreases, while the intensity 

of the diffuse radiation i↑, on the average, increases for fixed 
parameters of the problem. 

For the slant viewing angles ξ the effect of finite 
horizontal cloud size on the formation of the brightness 
fields of direct and diffuse radiations and their statistical 
characteristics intensities. With increase of ξ the probability 
for the viewing direction to be covered with cloud sides 
increases and results in the shift of maxima of variances 
toward smaller values of N and the decrease of variances Dϕ and 

D
0
 for both upwelling and downwelling radiations. 

At ξ > 0° in every individual realization of cloud field the 
receiver records the radiation coming not only from the cloud 
bottom (top), but also from the cloud sides. The mean optical 
depth of such a viewing direction, on the average, increases and 
the amplitude of fluctuations of scattered radiation probably 
decreases, as a result of multiple scattering. This may be the 
reason of the decrease of Di and Vi, ϕ. 

From finished the qualitative analysis of dependences of 
variances we proceed to some quantitative estimates. The results 

of calculations show that for the upwelling radiation the D↑
i 

value is 4 times less than D↑
ϕ at ξ = 0° and is 10 times less at 

ξ = 60° (Fig. 1). It means that D↑
ϕ and cross–correlation V

∼ ↑
i, ϕ 

mainly contribute to the variance of the intensity of the total 

radiation D↑
I. For the downwelling radiation at ξ = 0° D↓

i  is 

approximately 2 times greater than D↓
ϕ while at ξ = 60° D↓

i

 ≈ D↓
ϕ. With increase of optical depth τ from 5 to 40, D↑

i  

decreases while D↓
i  increases approximately by a factor of 

1.5–2. 
The investigation of the ratio δ

1
 = (DI – D

0
)/D

0
⋅100%, 

which determines the error of ignoring long–wave radiation 
scattering by clouds in estimating the variance, is of particular 
interest. In calculating the mean intensity in Ref. 1 the accuracy 
of the black–cloud approximation was estimated from the 
condition 
 

ΔT = ⏐T
0
 – T⏐ ≤ 1 K , (21) 
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where T
0
 and T

1
 are the values of brightness temperatures, 

corresponding to the mean intensities of "black" <I
0
(x)> and 

cumulus (with an account for scattering) clouds. 
For the stratified clouds (γ n 1) inequality (21) holds at 

ξ < 60–70° and τ > 10 (Ref. 1). It follows from the 
calculations of variances D

0
 and DI that for the above–

indicated values of γ, ξ, and τ and for an arbitrary N the 
highest δ

1
 does not exceed 5%. With increase of the parameter 

γ and the zenith viewing angle ξ and with decrease of the 
cloud optical depth τ the differences between DI and D

0
 

increase. In the case of the cumulus cloudiness (0.5 ≤ γ ≤ 2) 
the error in determining the temperature due to the ignorance 
of scattering does not exceed 1 K at ξ < 60–70° and τ > 15–20 
(see Ref. 1). The results of calculations show that for the 
cumulus clouds with τ > 15–20 for an arbitrary N the 
differences between the variance values of the zenith (nadir) 
brightness DI and D

0
 do not exceed 5%. At large values of the 

zenith observation angles δ
1
 substantially increases and 

strongly depends on the cloud amount. For instance, 

δ
1
 ∼ 100% at ξ = 60°, γ = 2, and τ = 40 for N = 0.2 and 

δ
1
 ∼10% for N = 0.5. 

We will now consider the correlation functions of the 
long–wave radiation intensity. The characteristic horizontal 
cloud size is the main parameter, which determines the 
correlation distance L. When D increases and the other 
parameters of the problem remain unchanged the average area 
of the region, in which the intensities are close enough in 
values, became larger and, therefore, the statistic interrelation 
between the intensities at the two different points separated at 
a fixed distance gets stronger and results in the increase of L. 
With increase of H or ξ the correlation distance also increases 
though the amount of this increase is less in comparison with 
an increase of D. For the zenith (nadir) direction L reaches its 
maximum value at N = 0.5 and further decreases when the 
cloud amount increases or decreases. For slant viewing angles 
ξ ≥ 30° the correlation distance decreases with increase of N. 
The above dependences of correlation distance L on D, H, ξ, 
and N are valid for correlation functions of both direct (Kϕ) 

and diffuse (Ki, Vi, ϕ) radiation. 

 

 
 

 
 

FIG. 3. The dependence of the correlation functions of the intensity on the extinction coefficient at N = 0.5, 
ξ = 60°, and σ = 5, (a) and 40 (b) km–1: 1) Ki(l), 2) Vi, ϕ(l), 3) KI(l), 4) K

0
(l). Here l = |x

1
 – x

2
|, solid 

curves indicate the downwelling radiation, and dashed curves indicate the upwelling radiation. 
 

We introduce the notation Li, Li, ϕ, LI, and L
0
 for the 

correlation distances defined at e–1 level and corresponding 

to the functions Ki, V
∼

i, ϕ, KI, and K
0
. According to 

Eq. (4), Kϕ and K
0
 coincide with the correlation function 

Kj, which has been studied in detail in Ref. 4. The 

calculated results show that for 0°≤ ξ ≤ 60°, 5 ≤ τ ≤ 40, and 

0 ≤ γ ≤ 2 the correlation distance L↑
i
(↓) > L

0
. The anisotropy 

of scattering results in the differences not only between the 
variances, but also between the correlation functions of the 

upwelling and downwelling diffuse radiations, i.e., L↑
i  > L

↓
i  

and ⏐L↑
i , ϕ⏐ > L↓

i , ϕ. It follows from Eq. (6) that the 

relative contribution of the correlations Kϕ, Ki, and Vi, ϕ to 

the total correlation function KI is determined by the 

contribution of the variances Dϕ, Di, and V
∼ ↑

i, ϕ to the  

variance DI. At N = 0.5, ξ = 60°, τ = 5, H = 1 km, and γ = 2 

the variance of the downwelling diffuse radiation is almost twice 

as large as D↓
ϕ and V↓

i , ϕ, therefore K↓
I ≈ K

↓
i, and, hence, it 

follows that K↓
I > K0

 (Fig. 3), while the variance of the 

upwelling radiation D↑
I is determined mainly by D↑

ϕ and V
∼

i, ϕ, 

therefore, the correlations K↑
ϕ and V

∼ ↓
i, ϕ mainly contribute to K↑

I. 

Since V
∼ ↓

i, ϕ < 0 the inequality K↑
I < K0

 holds (Fig. 3). 

At the slant observation angles ξ with increase of cloud 
optical depth τ (other parameters remains unchanged) the 

correlation distances Li, L↓
i, ϕ, ⏐L

↑
i , ϕ⏐, and L

0
 decrease. The 

correlation distances Li and Li, ϕ depend on τ stronger than L
0
 

(see Fig. 3). For instance, at N = 0.5, ξ = 60°, H = 1 km, and 
γ = 2 with increase of τ from 5 to 40, L

0
 decreases approximately  
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by 10% while Li and Li, ϕ – by approximately 20–30%. With 

increase of cloud optical depth both the correlation distances and 
the differences between LI and L

0
 decrease. For cumulus clouds 

with τ > 20 at the observation angle ξ = 60° the sings in 

inequalities L↓
I < L0

 and L↑
I > L0

 remain unchanged while the 

error in determining the correlation distance due to ignorance of 
scattering is approximately 10%. 

Conclusion. It has been shown in Ref. 1 that in 
determining the mean intensity, scattering may be neglected (the 
error in determining the corresponding brightness temperature 
does not exceed 1 K) if the observation angle ξ < 60–70° while 
the optical depth of cumulus clouds τ > 15–20. For stratified 
cloudiness this approximation is valid at ξ < 60–70° and τ > 10. 
We call the clouds, in which scattering can be neglected, as the 
black clouds. 

The calculated results, analyzed in the paper enables us to 
draw the following conclusions. 

1. For stratified cloudiness (γ < 1) the differences between 
the variances of the scattering and black clouds do not exceed 
5% at τ > 10 and ξ ≤ 60°, the correlation functions are 
independent of τ, and ξ tends to unity. 

2. For cumulus clouds (0.5 ≤ γ ≤ 2) with τ > 20 at 
viewing angles near zenith (nadir) the ignorance of 
scattering in calculating the variances results in the error of 
approximately 5%. The correlation functions coincide with 
the correlation function of the probability that the viewing 
zenith (nadir) direction is covered with clouds. With 
increase of the observation angle the difference  

between the variances of the scattering and black clouds 
increases and for large zenith viewing angles reaches its 
maximum of approximately 100% at small N, while the 
error in determining the correlation functions is 
approximately 10 %. 
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