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Based on the formalism of effective dipole moment operators, analytical equations have been
derived for a twice-transformed dipole moment. Complete equations for the transformed vibrational
moments of the transitions with AV < 3 have been obtained in terms of molecular parameters. A set of
linear equations describing the evaluation of the dipole moment function derivatives has been derived.
Based on the experimental data on the transition moment operators, derivatives up to the third order
have been calculated for the H,S molecule. The proposed scheme for estimation of the derivatives can be
used for all types of molecules. It provides for explanation of the discrepancy between the calculated first
derivatives of the dipole moment function and the ab initio results for the H»S molecule.

Introduction

Knowledge of the spectrum of sulfurous anhydride
H,S and its peculiarities is of great importance, first of
all, for wunderstanding chemical processes in the
atmospheres of giant planets, such as Jupiter, as well as
in evaluating industrial and volcanic emissions.

One of the features of this molecule is weak
intensity of fundamental bands.! They are much weaker
than the intensity of the same bands for H,O (Ref. 2)
and HjSe molecules (Ref. 3). One more feature is the
anomalous distribution of intensity over branches and
its dependence on the difference of the rotational
quantum numbers K (Ref. 4).

It is known that the intensity of lines is proportional
to squared matrix element of the dipole moment
operator of a molecule. Thus, we can assume that the
dipole moment function of the HyS molecule has some
characteristics that make it distinguishable from other
asymmetric-top molecules, such as O3z (Ref. 5) and H,O
(Refs. 2 and 6). This is also confirmed by the fact that
calculated results on the first derivatives of the dipole
moment function with respect to normal coordinates as
obtained from empirical values of the transition
moments? differ significantly from the results of ab
initio calculations.”-2223 At the same time, the second
derivatives” exceed the first derivatives, thus breaking
the linear approximation of the dipole moment function,
and higher derivatives play an important role in
construction of the model function.

In this connection, we have formulated the task,
based on our experience in calculating the dipole moment
functions of the asymmetric-top molecules by the
method of effective operators,> to correctly calculate
parameters of the dipole moment function of the H5,S
molecule with the account for the above features. In
constructing the model, we used the formalism developed
in Ref. 5, and all data available on the transition
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moments of the vibrational bands with AV <3 were
used in the calculations.

Theory

It is well-known that the intensity of transition
from the rotational-vibrational state @ to the state b is
proportional to the squared matrix element of the
dipole moment:

Sap =¥ 1 ;W bm]2: D)

where W, and W, are wave functions of the corresponding
states; [y is the projection of dipole moment in the space-
fixed coordinate system; it can be expressed through
projections in the molecule-fixed system ®u and directional

cosines ¢zq = Pq.

UZ:z¢Zuau~ (2
a

The projection of the dipole moment °y in the
molecule-fixed system is usually presented by a series
over normal coordinates:

“u = + ZuUka"' ;uUkIQkQI"'
<

TN Mt Gk G G T (3)
k<I<m

The coefficients of expansion *pp, “Hp;, and “Wppn,
are (accurate to 1/n! factors) derivatives of the dipole
moment function of the molecule (see Ref. 2 and
Appendix 1 in Ref. 5). These derivatives, in their turn,
can be found from solution of the inverse spectroscopic
problem for line intensities or from ab initio calculations.
Various theoretical approaches and methods are used

for calculation of line intensities.
In this paper, we use the formalism of the effective
Hamiltonian operators and dipole moment.28 Using the
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perturbation theory within the framework of this
approach, we can relate parameters of the effective
transition moments determined from processing the
experimental data with the dipole moment function.
The operator of the effective dipole moment fi, is

connected with the projection of the dipole moment py
by the same unitary transformations that are applied to
the rotational-vibrational molecular Hamiltonian H at
derivation of the effective Hamiltonians:

ﬁZ=...eiszeisluze_i51e_i52 . 4)

Here the transformation operators like generators Sy,
So, etc. are functions of the projections of the total
angular momentum J4 and rotational operators.28:9 The
use of designations proposed in Ref. 8 allows us to

write i, in the form:

ﬁZZ Zan ) an - rm]n—1¢’ (5)

m,n

where the index m is for the total vibrational power of
the operator, and # is for the total rotational power.
Thus, the operator of effective dipole moment is a
series expansion over both vibrational and rotational
operators. To separate of the operator of effective dipole
moment by orders of magnitude, it is convenient to use

the Amat —Nielsen scheme, in which terms M,,, are,

on the average, of the order of A”*#~1(°p,). In such an
approach, individual operators M,,, can correspond to the

probabilities of certain rotational-vibrational transitions.
Thus, the M, operator describes the transitions that

make up fundamental bands, and the operators My, and

1\7[31 describe, respectively, the transitions of the first

and second overtones and combination bands. The

explicit equations for the operators M,, with low

values of m + n are rather well known.2.8

This scheme allows us to find independently the first
derivatives of the dipole moment function, then the second
derivatives, then the third ones, and so on with the use of
perturbation theory and data on the vibrational transition
moments.25 However, for the H,S molecule the dipole
moment function has the peculiarity of low values of the
first derivatives. This peculiarity distorts the ordinary
expansion by orders of smallness and requires the terms of
higher orders of perturbation theory to be taken into
account at calculation of one-quantum transitions.

In this case, the effective dipole moment operators
including the rotational operator in the first power
(n = 1) for the considered transitions can be written as
follows:

ZAUZ‘ = 1, (HZ)(n:D :M“ +Mé1 +...,
ZAUZ' = 2, (ﬁz)(nﬂ) = M21 +..., (6)

ZAU,‘ = 3, (ﬁZ)(nZD :M31 +....
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Since we construct the dipole moment function up
to the third derivatives, let us consider, as in our
previous paper,” the double transformed dipole moment
operator (it is sufficient for vibrational transitions with
AV < 3). The allowance made for the terms of the third

order of perturbation theory My, for description of

probabilities of vibrational transitions with Av; = 1 leads
to a set of interconnected equations (6), which should
be solved to determine the parameters of the dipole
moment function.

For more convenient consideration, separate the

directional cosines from the operators M, :
an :1/2Z{(xﬁmn—1v¢a}' (7)

The use of the method of contact transformations
and the representation of secondary quantization with

the vibrational birth «, and annihilation «; operators
and with the technique of normal ordering described in
Ref. 9 allows us to write the explicit form of the

operators %fi,,0 withm =1, 2, 3

m=1:

o~ o a + +
Ao = Y (M7 + ) Giaja;}a; +a;)  (8a)
Z ]Z

m=2:
“fp = ) [Mjlaj'aj +aja)) + Ofi(aj'a; +aja)] (8
07
m = 3:
ar  _ a + o+ o+
Fiz = Z[riﬂ(“i ajaj +a;a;ap) +
1,7,
+ o+ +
+Oi(ajaja +afaja;)]. (8c)

It should be noted that the coefficients I'(; are the
corresponding first derivatives of the dipole moment
function multiplied by 1/\/5 (Ref. 2) in the case that
the consideration is restricted to the first order of
smallness for one-quantum transitions. The equations

for the coefficients F(: with allowance for the terms of
the third order of smallness are complex functions
depending on the first, second, and third derivatives of
the dipole moment function, as well as the parameters
of the molecular potential function, and they are
presented in this paper for the first time

M5 = g6Che) + g1 Cu) + Cu) + g5Ch) + oo (9)

The complex dependence of the coefficients F‘; on
the derivatives [Eq. (9)] indicates that the first
derivatives of the dipole moment function cannot be
found independently based only on the information on
the vibrational transition moments of fundamental bands,
as it was done in Ref. 2. To construct the dipole
moment function, we should use all the information on
the transition moments with AV < 3 and solve the set
of linear equations. The equations for the coefficients
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I'?]- and QZ» for two-quantum transitions m =2
(ZAv; = 2) are well-known?8.10:

M= giCuo + g7 + giCp + ... (10)
In our previous paper,® we presented explicit

equations for these coefficients ri(;l and Q;Z in the case
of three-quantum transitions m = 3 (ZAv; = 3):
r;F g’él(“ue) +911]l(a11k) +glz]l("ukz) +ggl(aUklm) +....(11)

Since in this work we do not use the data on the
intensity of hot and difference transitions, we present the
equations only for the coefficients I', separating the
explicit dependences on the parameters of the dipole
moment function in them. The values of the coefficient
g are given in the Appendix 1. The superscripts of the
coefficients ¢, as the subscripts of I, number the
vibrational modes, and the indices 1, 2, and 3 denote
the dependence on the first, second, and third
derivatives, respectively.

It is well known that the method of effective
dipole moment? significantly simplifies the calculation
of the transition probabilities, replacing calculation of
matrix elements of the molecular dipole moment (2) in
exact wave functions

BlJall"lzlq'JbD: eff Bl"alﬂzqubEFff (12)

by calculating matrix elements of the transformed
dipole moment in the effective wave functions

w 0 =0o, 0y 03 JK, K, O =

= ov cV..CJKy [ (13)
PRPEE

where V takes sequentially all values in a given polyad
P. [V 0=, Moy, Mog O are wave functions of the
harmonic oscillator, [JKy O are the symmetrized
rotational wave functions, and the eigenvectors C}/Ky
are determined from diagonalization of the effective
Hamiltonian matrix, i.e., from processing of either line
positions or energy levels.

When processing intensities of individual bands
(v1 vy v3) - (v} vy v3), it is convenient to use the so-
called effective operators of transition moment erﬁ 7
determined in Refs. 2 and 11 by writing the transformed
dipole moment in the form:

fi, :\Z|VDVV'L~12D”|, (14)

where
VVii,=DV|{i,| V'O (15)
This procedure determines the transition moment
operators as purely rotational operators depending on
directional cosines ¢, and components of the angular
momentum operator Jy. The vibrational transition
moment includes only the corresponding directional

cosine depending on the type of the vibrational band
(type A or B). To find the explicit equations for the
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vibrational transition moments VV'ﬂZ of the bands

under study [set of equations (8)], we have to calculate
the known matrix elements of the birth and
annihilation operators in the basis of wave functions of
harmonic oscillator. Using the designations we have
proposed in Refs. 5 and 9 and determining the vector of
the upper vibrational state V' as V"=V £1,+1,+1,
the contributions coming from the vibrational moments
to one-, two-, and three-quantum transitions can be
written as follows:

V] @]V + 24, 5= FH(V) 8 (16)
V]|V L+ TR FHVIBES (D)
V| 90|V +1, +1, +1,0= FHP(V) 057, (18)

The coefficients 6y at the vibrational transition
moments are rather simply related to the coefficients I'®
and Q% of the transformed dipole moment. Thus,
0k = FZ, gk = I'Zk, gk = ng, f(V) are the functions
of vibrational quantum numbers and the equations for
them are well known.2:5:8:9 The rest equations are given
in Table 1 (Ref. 5).

Thus, thanks to the method of
transformations, we can express the parameters 6, as
functions of molecular parameters, anharmonicity
constants Kjj;, Kyjj,,, components of the constant dipole
moment °H., and derivatives of the dipole moment
function GUIw ap'klv ap'klnr

contact

Calculation of derivatives
of the dipole moment function

It is known that for the asymmetric-top molecule,
if the consideration is restricted to the third order of
smallness, the dipole moment function has 19 unknown
derivatives, and to determine them, we need a set of at
least 19 equations. Above we have constructed such a
set: equations (16)—(18). The known values in this set
are empiric parameters of models used for processing of
intensities. As was already noted, at processing of
intensities the transition moment operators are written
as a series over rotational operators211:

YW, =DV, VD=
g
= ? "V Tobg —i/zg "V Tap{0q. ot +
a a

, O
+1/2ZVV Tapl0a.JpJi} +..0 (19)
By H

The explicit form of rotational operators entering into
Eq. (19) depends on the type of a vibrational band: A
or B. At simulation, the consideration is usually
restricted to eight terms of the series, the parameters

(VV'Ty are declared empirical and determined from
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processing of intensities by the least squares method. In
this paper, we use the same designations for the
empirical parameters {VV'T} as in Ref. 5, though those
differ from the generally accepted ones.!!

Of the entire series of empirical parameters {"V'T},

VV'TQ,

the parameters corresponding to the operators

“f,,0 (8) in the transformed dipole moment, make the
largest contributions. These parameters VV'Ty for 19
vibrational bands that are given in Table 1 were taken

for determination of the derivatives of the dipole
moment function of HyS molecule.

Table 1. Parameters of the vibrational transition moments

{VV' To}*, used in calculations in this work

Value of parameter
Polyad Band YV 0102, D Reference
Vq (029494 + 00021)
1 V3 002137 + 00014) 4
2vy (-0.346, + 0.010)
2 vy (=0.969 = 0.050) 12
Vit Vy 0.683p6 £ 0.012
3 3v, 0.10006 £ 0.030 13
Votvg 88751 + 0.015
vitvy  (=0.3114 £ 0.050)
2\)1 02155 +0.021
4 2v3 0.090, = 0.026 14
Vi{+2vy 0.047g5 £ 0.001
2vytvs 0.0924; £ 0.002
2V1t+v,y 0.08359 £ 0.002
5 Vit Vytvsg 019186 +0.002 15
Vyt+2v3 0.0
3vq (=0.0267¢ £ 0.002)
6 2V1+V3 004825 + 0.002 16
V{t+2v3 0.01997 £ 0.002
3vs (=0.02045 £ 0.002)

* The designation VV'T(, corresponds to the commonly

"
accepted V'V .

Before coming to calculations, it should be noted
that there exists a problem of ambiguity in the

parameters of the effective dipole moment {"V'T} that
were obtained by different authors from processing the
experimental spectra. This ambiguity arises, because the
unitary transformations that are applied to the
operators do not change the operator form of the
effective Hamiltonian or the effective dipole moment,
but can significantly change the parameters

T=T+ AT.

Each set of the effective Hamiltonian parameters
corresponds to a certain set of parameters of the
effective dipole moment. Therefore, in comparing
experimental values with the calculated data, we
should use the corresponding models of the effective
Hamiltonian and the effective dipole moment. All the
experimental data on the transition moments given in
Table 1 were obtained for the models of effective
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Hamiltonians, in which the vibrational Fermi resonance
was thought insignificant, and the effective value of the
constant F was correspondingly assumed equal to zero.
The same conditions were fulfilled when writing
explicit equations for the transformed dipole moment.

As known, one of the important problems in
calculation of derivatives is the problem of selecting the
sign of the derivative. This problem arises because the
line intensity is proportional to the squared matrix
element of the dipole moment, which can have both
positive (+) and negative (=) sign. The procedure of
the method of least squares used at processing of
experimental intensities allows determination of sign
(+) or (=) for the parameters of interacting bands.
Thus, there is an ambiguity in determination of the so-
called common phase factor (=1)* (Ref. 5) for polyads,
which combine vibrational states in the presence of a
resonance between them. Numeration of polyads used in
this paper is given in Table 1.

Introduction of the phase factor allows us to relate
the empirical parameters of transition moments VV'Tg
with their values found with the help of the perturbation
theory as follows:

1D (VV'Ty) = {f(V)8y). (20)

The left-hand side of the equation presents the
experimental values, and the right-hand side gives the
relations for the parameters {6y} containing the sought
derivatives of the dipole moment (see Egs. (9)-(11),
(16)-(18), and Appendix 1). Now, having known the
parameters of the potential function, values of the
constant dipole moment and the inertia tensor of the
molecule, we can find the derivatives of the dipole
moment by solving the set of 19 linear equations.
However, the difficulty is in the fact that the set has 26
solutions, i.e., 64 sets of derivatives. This is explained
by the fact that the phase factor in the six selected
polyads can be both +1 and -1, thus leading to
different values and signs of the derivatives. How can
we determine the correct solution?

To remove this ambiguity, in the generally accepted
scheme, which involves sequential determination of
first, second, and third derivatives, the signs are
selected based on ab initio calculations, on the analysis

of the so-called rotational corrections VV'TGB (19) and
calculations for difference bands.2:5:17 For the case of
H>,S molecule in selecting the phase factors, we took, as
the reference parameters, the values of the second
derivatives found from empirical calculations that are
in close agreement with the ab initio calculations.?3
The agreement of the wvalues of the second
derivatives determined the phase factors of the 1st, 3rd,
and 4th polyads as positive (+), and this allowed the
number of solutions to be decreased down to 23. For
the second polyad represented by only one state vy, we
also took the positive (+) phase factor, and this
determined the sign of the first derivative with respect
to the second coordinate *H, as negative. This all
allowed the number of solutions of the system to be
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decreased down to four. The four found sets of derivatives
of the dipole moment function and their errors are
presented in Table 2, along with the phase factors of
the polyads, used in solving the set of equations. The
absence of data on intensities of difference bands did
not allow us to draw any final conclusion, as in Ref. 5,
on the signs and values of the third derivatives.

Analysis of calculated results

Solving the set of equations (20), we succeeded in
analyzing the contributions coming from each derivative
to the corresponding parameter of transition moments
for all of the 19 vibrational bands. The results of
numerical calculation of the functions g for each
derivative entering into Eqs. (9)=(11) in the case that
the phase factor of all the polyads is positive are given
in Table 3. The analysis of contributions is especially
obvious for the fundamental bands.

As is seen from Table 3, the contributions
including the second and third derivatives of the dipole
moment function that arise when taking into account
the third order of smallness of perturbation theory are
comparable with the first derivatives and therefore they
cannot be neglected. Neglect of the contributions of the
third order leads to incorrect estimates of the first
derivatives of the dipole moment function.?

It should be noted that the parameters of
transition moments of the vibrational bands with
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AV =2 are almost independent of the first derivatives
and they, on the whole, bear the information on the
second derivatives. This allows us to estimate the
second derivatives independently of the first and third
ones. For the transitions with AV = 3 the contributions
of the coefficients including the second derivatives are
large, whereas the contributions of the first derivatives
are small and can be neglected.

Thus, numerical analysis of contributions to the
parameters VT, of transition moments shows that for
the moments of fundamental bands the contributions
from the second and third derivatives of the dipole
moment function are comparable with or even larger than
the contribution from the first one. All the calculations
were made with the parameters of the potential
function taken from Ref. 18. To estimate the accuracy of
the derivatives depending on the molecular potential
function, we made the calculations for the four known
sets of parameters of the potential function.!82! Here
we did not present the results of these calculations,
since the obtained values of the derivatives vary within
the accuracy of Table 2. This also corresponds to the
calculated results presented in Table 3, where for the
transitions with AV =2 and AV =3 the functions g
dependent on the first derivatives and parameters of the
potential function are in practice negligibly small. The
effect of cubic anharmonicity is marked only when
estimating the contributions depending on the second
derivatives.

Table 2. Parameters of the dipole moment function of the H,S molecule calculated
from the normal coordinates *, in D

Polyad 123456 123456 123456 123456
Phase factor Error (102
(—1)F +4+++++ + 4+ =+ +++++ - ++++ -

‘g 0102 0.160 0.155 0.110 0.110 0.07
Ty 0102 -2.11 —1.94 -2.11 -1.94 0.5
2ug 0102 0.30 0.30 0.33 0.33 0.05
“uyy 0102 0.32 0.32 0.31 0.31 0.04
Uy 0102 1.39 1.38 1.39 1.38 0.02
Hyy 0102 —0.48 —0.48 —-0.49 —-0.49 0.01
“uy3 0102 -0.58 —-0.58 —-0.58 -0.58 0.01
23 0102 1.57 1.57 1.57 1.57 0.01
THsz 0102 0.14 0.14 0.14 0.14 0.04
“uyqq 0102 0.010 0.010 0.070 0.070 0.003
U2 0102 0.24 -0.10 0.24 -0.10 0.04
“Uypp 0102 0.16 0.16 0.16 0.16 0.01
Tlyy 0102 0.24 0.24 0.24 0.24 0.02
2nyqz 0102 -0.03 -0.03 —-0.22 —-0.22 0.01
2oz 0102 0.73 -0.35 0.73 -0.35 0.07
U0z 0102 0.10 0.10 0.10 0.10 0.05
U3z 0102 0.11 0.11 0.03 0.03 0.01
TlUyg3 0102 0.08 0.08 0.08 0.08 0.03
g3z 0102 —-0.060 —-0.060 -0.020 -0.020 0.005

* The harmonic frequencies and anharmonic constants used in calculations have first
been recalculated based on the force fields given in Ref. 18.
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Table 3. Estimated contributions of the coefficients including the corresponding derivatives
of the dipole moment function to the parameters of vibrational transition moments for the H,S molecule (D [1103)*

X;?r;:;lz a VV’Tu e | TRy | M2 | M3 | TR | TRz [ PR3 | THe2 [ PHo3 | THss TR TR PHs] 22| PR3 [THes3 | THoo2 | THoo3 | T H2ss| THsss
vy x 4.2 1.5 —0.0 1.6 -0.2 -0.4 0.2 0.1 0.8 0.6

2 x —13.7 -0.0 -21.4 0.0 -0.0 2.4 0.1 -0.0 1.2 3.6 0.4

V3 z 03 ][00 -0.0 0.1 3.0 -1.9 -0.4 -0.1 0.5 -1.0
2v4 x 3.1 -0.1 —0.0 3.2

vitvy & 13.7 0.0 -0.2 13.8

Vit V3 z —6.210.0 -0.4 -5.8

2vy x —4.9 -0.2 0.1 —4.8

Votvg z 17.8 | 2.0 0.0 15.7

2v3 x 1.3 -0.1 —0.0 1.4

3v4 x —0.3 0.0 0.0 -0.4 0.0 0.1

2vitvy  x 1.7 -0.0 0.0 0.1 -0.8 -0.0 2.4

2vitvg z 1.0 |-0.0 0.1 1.2 0.0 -0.3

vi+2vy,  x 1.0 0.0 -0.0 -0.6 0.1 -0.1 1.6

Vitvytvs z 5.4 | 0.2 -0.0 -0.2 -1.9 7.3

vi+2v3 x 0.4 0.0 -0.0 -0.4 0.0 -0.4 1.1

3vy x 1.2 -0.0 0.0 -1.3 0.0 2.4

2vptvy  z 1.9 | 0.0 0.0 0.6 0.2 1.0

vot2vz  x ~0 -0.0 0.1 -0.9 -0.0 0.1 0.8

3vg z —0.2 {-0.0 0.0 0.4 0.0 -0.6

* The values are rounded to the first digit after the point (0.0 means that the value is less than 0.05). The empty cells mean
that the corresponding derivatives, theoretically, do not contribute to the considered approximation. The force field was taken from
Ref. 18.

Table 4. Comparison of the parameters of the dipole moment Thus, in this work the parameters of the dipole
function of the HyS molecule obtained by different methods, moment function up to the third order were determined
in D 0103 simultaneously for the first time. The derivatives
ab initio calculations obtained in such a way are in closer agreement with the
) N Set 1 Set 11 | Set 1II results of recent more accurate ab initio calculations?223
P"‘:‘lme’ Th‘ks* Tr"fltloff] [Ref. 7] | [Ref. 7] | [Ref. 23] of the dipole moment functions (Table 4).
erver scheme (CEPA | (SCF | (cCSD The derivative p3 turned out to be especially
cal.) cal.) (TD sensitive to contributions of high orders; in the
g 1.60 4.16 (Ref. 3) 6.8 1.90 1.63 standard scheme of solution of the inverse problem, this
Ty |21.1 =13.7 (Ref. 3)  —27.0 -32.2 —-23.36 derivative was underestimated by an order of
a3 | 3.00 0.30 (Ref.3) 5.5 1.1 2.48 magnitude.
Ty, | 3.20 3.20 8.2 5.6 3.64
g | 13.9 13.9 14.0 16.1 15.6 .
Ty | 48 -4.8 -84  -112  —4.03 Conclusion
ws | 5.8 -5.8 8.1 -7.2 6.1
2y | 15.7 15.7 16.6 19.5 17.35 For the double transformed operator of dipole
gy | 14 1.4 34 48 0.91 moment, the analytical equations are written that relate
gy | 0.10 _ _ _ _ the parameters of vibrational transition moments of the
- 24 _ B B B fundamental bands to molecular constants and allow
K 12 16 B B B B correct estimation of the first derivatives of the dipole
t“m : - - - - moment. Based on the earlier developed recursion
Moz | 24 scheme,” the set of linear equations was written for
iz | 03 - - - - determining the derivatives of the dipole moment
iz | 73 - - - - function up to the third order and the derivatives were
“Uggs | 1.0 - - - - found. As experimental data, we took the parameters of
Hzz | 11 - - - - vibrational moments for all transitions with AV < 3.
gz | 0.8 - - - - The scheme proposed for determination of the
l3s3 | —0.60 - - - - derivatives can be applied to any type of molecules. It

* For a comparison, we fook the calculated results was tested with the ozone molecule, for which the
obtained with the phase factor (+) for all the polyads. ordinary expansion into a series by orders of smallness
** This perturbation theory scheme neglects the terms of is fulfilled,> and gave the same results as the ordinary
the third order of smallness. scheme.®> It should be noted that the accuracy of
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determination of the derivatives finally depends on the
accuracy of determination of the experimental
parameters. As the parameters of the transformed dipole
moment are refined, the function changes too. In this
paper, we did not give the final values for the six third
derivatives, but only presented possible versions. The
problem of signs for the third derivatives can be solved,
when we will have the data on the intensity of
difference bands, such as v{ + v3 — vy, or reliable values
for the rotational corrections to the transition moments.
For the HyS molecule, the intensity distribution in
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branches over rotational quantum number has some
peculiarities and this problem is still to be solved.
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APPENDIX

I. Explicit form of functions g for transitions with AV = 1

ki33 B, (0 —w3) Yaky33 B, (0 — 03) k
O:x“e/J—E EAIPS 1 (o3ko33B, (0 — 033 _3/22 Loy (Sgy +Syoa) - 63%
a(w1ws>1/2(2w3 ooy (wy03)! 203 + 0w, & g
O 9k2 w; (0; +,) 9k, 0
O a“i — z Y w;) _ Z uv (2“)\/ Z 1ip Lle [(ll.ll)+(l—pl)] ) G”% 0
g g 4 4oy -02)? & Qo +w,) & Aw; g g
J 9k ok, O
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II. Explicit form of functions ¢ for transitions with AV = 2
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Equations for G;jy are given in Appendix 2 of Ref. 5:
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