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Computational relationships are obtained for estimating the effect of cloud cover 
upon the intensity of a signal emitted by a surface source and detectedat high 
altitude by a sensor with a wide field of view. The treatment follows the narrow-angle 
approximation of radiation transfer theory applied to a beam of radiation with 
Gaussian intensity distribution in both the angular and lateral spatial coordinates. The 
model of a homogeneous scattering layer, its scattering phase function approximated by 
a Gaussian, is used. 

The possibility of estimating the parameters of the cloud layer from the magnitude of 
the distortions introduced by it in the spectral distribution of the sounding pulse emitted 
by a flash-lamp, using the relationships from the present study, is discussed. 

 
 

Earlier studies1–3 have considered the passage 
through a uniform cloud layer of a beam of optical 
radiation with Gaussian intensity distribution in both 
the angular and spatial coordinates in the plane of the 
source z = 0: 
 

 
 

 (1) 
 

Analytical expressions were obtained for the beam 
characteristics upon exit from a layer, whose scattering 
and extinction coefficients are described by the 
following function: 
 

 (2) 
 
and the scattering phase function of the medium is 
approximated by the Gaussian function: 
 

 (3) 
 

with small variance 
 
1/2 n 1 (4) 
 

In such a model the signal power recorded by a 
detector with wide field of view at a distance z > d 
from the source is given by Eq. 3 
 

 
 

 (5) 

 

 (6) 
 

were P(R, z) is the power recorded by the detector; 
 = exd and s = scd are the extinction and 
scattering optical thickness of layer, respectively; 
 

 (7) 
 

is a parameter corresponding to the beam width at the 
distance z from the source in the absence of the 
perturbing action of clouds; 1/ is the angular size of 
the beam; 1/ is the linear size of the beam in the plane 
z = 0; R is the radius of the detector iris; J1() and 
erf() are the Bessel function and the probability 
integral, respectively, of the argument . The factor 
exp[(z)] describes the effects of multiple scattering. 

Equations (5) and (6) are valid in the 
narrow-angle approximation for random media with 
highly anisotropic scattering.4,5 Within the 
framework of the considered model these follow from 
the general equations 
 

 
 

 
 

 
 

which in the narrow-angle approximation, relate the 
spatial spectra of the perturbed (I) and unperturbed 
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(I0) fields.5 Bellow, we will analyze these equations 
for a case of practical importance in which the detector 
is located at a very remote distance from the scattering 
layer. For this case computational relationships 
suitable for practical use in evaluating the influence of 
clouds on the value of recorded signal will be derived 
from Eqs. (5) and (6). We will consider the detector 
removed "to infinity". 

2. The condition of removal "to infinity" is 
equivalent to satisfying the inequality 
 
 . d/, (8) 
 
which allows us, when calculating the parameter (z) 
from Eq. (6), to consider 
 
ud/2 n 1 (9) 
 
In going from Eq. (8) to Eq. (9) we have taken into 
account the fact that the main contribution to the 
integral in Eq. (5) comes from low values of u. The 
error of approximating the value of (z) at high values 
of u is negligible when estimating P(R, z). 

We shall use the Taylor series expansion of the 
error integral erf [u(z – d)/2] 
 

 
 

 (10) 
 

Retaining only the first two terms of the expansion 
(recall inequality (9)), we obtain from Eq. (6)  
 

 
 

 (11) 
 

Then 
 

P(R, z) = 2 
R
zexp(–)

0



du e–u2
J1(2 u R/z)  

 

 exp   
2 2u a

se  g 2
 
R2

z2  exp(–)
0



d e–
 exp   

2a
se . 

 

 (12) 
 

The second equality in Eq. (12) follows from the first 
on the condition that the value  u R/z remains small: 
 

 
 

Equation (12) is basic to all the calculations for the 
remote detector. From it simple computational 
relationships are derived. 

Integral (12) is exactly calculated by expanding 

the exponent exp   
2 2u a

se  into a power series and 

then integrating thus obtained series term by term, 
 

 
 
using the tabulated relations.6 

 

 
 

 
 
The solution is then written in the form 
 

P(R,z) = exp(–) g 

 

 (13) 
 

For s ` 1, to first order in the small parameter s 
the above expression yields: 
 

g
 

 

 (14) 
 

where 
 
a =  – s (15) 
 
is the optical thickness of the layer due to inelastic 
scattering. In the visible spectrum absorption by the 
water droplets is small and the value a can be 
neglected, assuming 
 

exp(–a) g 1 
 

The series in Eq. (13) is then convolved and for  =  
the solution can be represented in closed form: 
 

 (16) 
 

The solution (16) in this case can be obtained directly 
from Eq. (12), writing the integral contained therein 
in the form 
 

 
 

Equation (16) remains approximately valid even when 
 differs from , but by not too large a value: 
 

 (17) 
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where e is the Napierian base. If s  5, then this 
inequality is satisfied for practically all narrow beams 
with divergence 1/ comparable to or less than the 
width of the scattering phase function 1/. 

For beams with wider directional diagrams, i.e., 
when  < , another approximation may be used. 
Expanding the exponent exp(–a2) in the power 
series: 
 

 
 
from Eq. (12) we obtain to first order in the small 
parameter a2 > 2/2 
 

 (18) 
 

All the above approximations of the exact 
solution (13) are encompassed by the equation: 
 

 (19) 
 

in which 
 

2 2
1 / (1 ).p a a   (20) 

 
The parameter p1 is defined by Eq. (20) so that 
Eq. (19) will be applicable to beams with arbitrary 
directional diagrams. For small values of s it coincides 
with Eq. (16) or (18), depending on the value of a2. 

A more exact expression for P(R, z) can be had by 
retaining the second-order term 2a4/2 in the expression of 
the exponent exp(–a2). In this case 
 

 
 

 
 

and Eq. (12) may be written in the form 
 

 (21) 
 

where 
 

 
 

is Dawson’s integral of the argument 
 

 (22) 
 

Using the asymptotic approximation6 
 

 
 

we obtain from Eq. (22) 
 

 
 

 (23) 
 

For large s the correction to Eq. (18) is not 
significant. For small values of sa

4, Eq. (19) follows 
from Eq. (23) to the accuracy of the first-order terms 
in sa

4 and the second-order terms in a2. 
3. Equation (19) is a calculational approximation 

suitable for practical applications when the condition 
of detector remoteness (8) is satisfied and the 
narrow-angle approximation of radiative transfer 
theory is justified within the context of the model 
developed in Ref. 3. Specifically, it can be used to 
estimate the parameters of the cloud layer s and 2 
from the results of high-altitude measurements of 
signals emitted by a surface flash-lamp with know 
directional diagram and beam spectral energy 
distribution. The layer parameters are then determined 
from the distortions induced along the beam path in 
the spectral composition of radiat ion. 

Let us consider the case in which the | distribution 
of radiation intensity at the bottor of the layer, 
described by Eq. (1), is generated by an isotopic 
surface source of small dimensions. In this case the 
angular distribution of energy in the light spot at the 
bottom of the layer is described by the expression7 
 

I0()  cos
3  

 

Approximating this expression by the Gaussian| 
function 
 

I0() = exp(–2 2), (24) 
 
we obtain 2 g 2. At distances z considerable larger that 
the altitude h of the bottom of the cloud layer, the value 
2/2z2 can be neglected it comparison with unity, since 
1/ is of the order of h. The computational formulas for 
the considered case can be represented in the form 
 

 
 

 (25) 
 

where E() and Ð() are the spectral densities of the 
radiation in the plane z = 0, at the detector entrance 
aperture; A is a constant that is independent of 
wavelength. Assuming certain model ideas about the 
dependence of 2 on , e.g. setting8 
 

2  1/2, 
 

We can determine ts and a2 from a set of measured 
values P(1), i = 1, 2,  n, using Eq. (25), n  3. 
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