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From the solution for the linear theory of thermal blooming,2 the propagator is a 
2×2 matrix that satisfies an integral equation of Fredholm type. We develop a 
generalized Fredholm series solution to this integral equation. Since the kernel is a 
matrix, the usual determinants in the Fredholm series contain ordering ambiguities. 
We resolve all ordering ambiguities using the standard diagrammatic representation 
of the series. The Fredholm denominator is computed for the case of uncompensated 
and compensated propagation in a uniform atmosphere with uniform wind. When the 
Fredholm denominator vanishes, the propagator contains poles. In the compensated 
case, the denominator does develop zeros. The single mode phase compensation 
instability gains computed from the zeros agrees with results obtained from other 
methods.  

 
1. INTRODUCTION AND BACKGROUND 

 
The effects of thermal blooming in large beams can 

be broadly classified by the transverse size of the 
disturbances in the beam. Effects on the order of the 
size of the beam are called whole beam blooming. 
Structure much smaller than the beam diameter 
(typically on the order of the scintillation scale) is 
called small scale blooming.  

Blooming converts intensity fluctuations into 
(unwanted) phase fluctuations. Assuming ideal beam 
optics, there are two main sources that produce 
intensity fluctuations that act as initial conditions for 
blooming. They are atmospheric turbulence and edge 
diffraction. The ability of atmospheric turbulence to 
produce intensity fluctuations is measured by the 
turbulence Fresnel number, N

T
 = r2

0
/λL. The smaller 

the turbulence Fresnel number, the bigger the ambient 
intensity fluctuations. The production of intensity 
fluctuations from edge diffraction is measured by the 
whole beam Fresnel number, N

F
 = D2/λL, where D is 

the beam diameter. The smaller the beam, the smaller 
N

F
 is and the greater the effects of edge diffraction.  

Thus, whether whole beam blooming or small scale 
blooming is dominant depends on the square of the 
relative size of the turbulence coherence diameter to the 
size of beam. As an explicit example, consider a 10–
meter system with a blooming layer height of 5 km.  
 

TABLE I. Hufnagel–Valley 5/7 turbulence profile. 
D = 10 m, L = 5 km, N

F
 = D2/λL, and N

T
 = r2

0
/λL.  

 

Wavelength λ 0.41 μ 0.8 μ 1.7 μ 3.8 μ 10.0 μ
Whole beam 

Flesnel number 
N

F
 

 
48780 

 
25000 

 
11764 

 
5263 

 
2000 

Turbulence 
Flesnel number 

N
T
  

 
0.780 

 
2.06 

 
5.90 

 
18.2 

 
70.7 

 
Without a doubt, large aperture high intensity HPL 
systems fall into the small–scale regime.  

There are two physical processes involved in 
blooming: stimulated thermal Rayleigh scattering 
(STRS) and the phase compensation instability (PCI). 
A qualitative description of these processes is given in 
Ref. 1. The STRS is a process that occurs at all 
transverse spatial scales. The STRS occurring at spatial 
scales outside of the compensation band cannot be 
affected by the adaptive optics and therefore is 
completely uncorrectable. The PCI is an adaptive optics 
feedback instability and therefore occurs inside the 
compensation band. Even though PCI occurs at 
compensated spatial scales, it too is not completely 
correctable due to diffraction even if the adaptive optics 
system has infinite dynamic range at each compensated 
scale.  
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The dominance of small–scale blooming has several 
important consequences. We demonstrated that small–
scale physics is linear even though the equations of 
motion are nonlinear.2 We also used our analytic 
computation of the structure functions and Strehl ratio 
to develop analytic functional scaling based on the 
absorption profiles.3 In addition, the beam edges are 
dynamically unimportant, thus whole beam Strehl 
predictions can be made from infinite beam results or 
patches using functional reconstruction.4 We 
implemented the functional absorption profile scaling 
and reconstruction as a systems model to make accurate 
Strehl predictions for large beams in real–time.4,5 
Unlike brute force 4–d wave–optics simulations, 
reconstruction becomes more accurate as the beam gets 
larger and is presently the only way to predict large 
beams results accurately.  

In Ref. 2 we converted the linearized matrix 
differential equations of motion into an integral 
equation of motion for the Green's functions or 
propagators. We solved the integral equation in the 
time domain perturbatively as a Neumann series. The 
integral equation is of the Fredholm type (except that 
the kernel is a matrix), and therefore can be expressed 
as a Fredholm solution. The resolvent kernel of the 
Fredholm solution is written as the ratio of the 
Fredholm first minor over the Fredholm determinant. If 
the Fredholm solution is expanded in a power series 
(the Fredholm series solution), then the Neumann series 
is recovered after the division is completed. However, 
unlike the Neumann solution, the Fredholm determinant 
can be examined to determine if the propagator contains 
poles since the determinant will vanish at a pole. If the 
Fredholm solution is not expanded in a power series, 
then it is a nonperturbative representation of the 
propagator. The determinant and minor can be expressed 
as path integrals and are computed using functional 
calculus. The path integral representation of the 
uncompensated propagator is given in Ref. 6. The 
Fredholm solution is summarized in the figure below.  

 

Fredholm solution: 
– propagator = free propagator + resolvent 

– resolvent is the ratio: 
Fredholm first minor
Fredholm determinant 

perturbative  nonperturbative 

 
Express Fredholm first 
minor and Fredholm 
determinant as a power 
series in λ  
 
– Fredholm series 
solution 

 Compute Fredholm first
minor and Fredholm
determinant using functional
calculus 
 

– Fredholm determinant is a
sourceless path integral 
 

– Fredholm first minor is
the second moment of a
path integral with sources 

 

In this paper we will use the Fredholm series 
solution to compute the Fredholm determinant for case 
of uncompensated propagation and for compensated 
propagation. We will find for uncompensated 
propagation that the determinant does not vanish so 
that the STRS propagator does not contain poles. When 
phase–only compensation is introduced, the determinant 
does vanish at isolated points so that the compensated 
propagator does contain poles. The physical process 
associated with the existence of these poles is PCI.  

2. INTEGRAL EQUATIONS OF MOTION 
 

For phase and intensity fluctuations, S
^

1
 and I

^
1
, 

about a plane wave, the combined heating and 
propagation equations of linearized isobaric thermal 
blooming are  
 

∂
ò
 = ⎝
⎛

⎠
⎞∂

ξ
 –1

1  ∂
ξ

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I

∧
1

S
∧

1

 + ( )0 0
1 1  

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I
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1

S
∧

1

 =  

 

= 

⎝⎜
⎛
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⎞0

β δ(τ) δ n
∧
(ξ)

 (1) 

 

or  
 

(D(0) + V)
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞I

∧
1

S
∧

1

 = 
⎝⎜
⎛

⎠⎟
⎞0

β δ(τ) δ n
∧
(ξ)

 ,  (2) 

 
where ξ = ê2 z/2κ is nondimensional altitude z, τ is 
nondimensional time, and β = 4κ2/ê2 where κ = 2π/λ and 
ê is the transverse spatial frequency. The blooming vertex 
operator V converts intensity into phase at one point  
 

( )0 0
1 0 ( )

I
S  = ( )

0
S

bloom

 .    (3) 

 
The Green's functions or propagator G(ξ, ξ

0
; τ – τ

0
) for 

the phase and intensity fluctuations satisfies  
 

(D(0) + V) G(ξ, ξ
0
; τ – τ

0
) = 

 

= ⎝
⎛

⎠
⎞δ(ξ – ξ

0
) δ(τ – τ

0
)

0
  

0
δ(ξ – ξ

0
) δ(τ – τ

0
)  . (4) 

 

The propagator also satisfies the integral equation2  
 
G(ξ, ξ

0
; τ – τ

0
) = G(0)(ξ, ξ

0
; τ – τ

0
) – 

 

–⌡⌠ d τ
1
 ⌡⌠ d ξ

1
 G(0)(ξ, ξ

1
; τ – τ

1
) V(ξ

1
) G(ξ

1
, ξ

0
; τ

1
 – τ

0
),   (5) 

 

where G(0)(ξ, ξ
0
; τ – τ

0
) is the free propagator (no 

blooming, V = 0, just turbulence). If there are no 
adaptive optics, or ê lies outside of the compensation 
band, the uncompensated free propagator is2  
 

G(0)(ξ, ξ
0
; τ – τ

0
) = H(ξ – ξ

0
) H(τ – τ

0
)× 

 

× 
⎝
⎛

⎠
⎞cos(ξ – ξ0)   sin(ξ – ξ0)

–sin(ξ – ξ0)  cos(ξ – ξ0)
 , (6) 

 

where H is the Heaviside step function. When the transverse 
spatial frequency ê is in the compensation band, the 
compensated propagator, call it G

PC
(ξ, ξ

0
; τ – τ

0
), satisfies 

the same integral equation, Eq. (5), as the uncompensated 
propagator. The only difference is that the free propagator 
is modified to include the new boundary condition at 
ξ = 0 introduced by the adaptive optics. We will return to 

this in Sec. 6.  
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3. FREDHOLM SERIES 
 
Since we are interested in computing the location of 

the poles, if any, in the uncompensated and compensated 
propagators, let us apply the Laplace transform to the 
integral equation of motion, Eq. (5). Let s be the Laplace 
transform variable dual to time τ. After multiplying by s, 
Eq. (5) becomes  
 
sG(ξ, ξ

0
; s) = G(0)(ξ, ξ

0
) – 

 

– 
1
s ⌡⌠

 d ξ
1 
G(0)(ξ, ξ

1
) V(ξ)(s G(ξ

1
, ξ

0
; s)) , (7) 

 
where in the uncompensated case,  
 

G(0)(ξ, ξ
0
) = H(ξ – ξ

0
) 
⎝
⎛

⎠
⎞cos(ξ – ξ0)   sin(ξ – ξ0)

–sin(ξ – ξ0)  cos(ξ – ξ0)
 .  (8) 

 
A Fredholm equation of the second kind is of the 

form7:  
 

G(x, y) = G
0
(x, y) + λ ⌡⌠ d z K(x, z) G(z, y) ,    

 
where K(x, y) is the kernel. Comparing with Eq. (7) we 
see that λ = – 1/s, and that K = G(0) V. It is more 
convenient to associate the blooming vertex operator V 
with ∫ dz than with the kernel K, hence we will apply the 
Fredholm series solution to an integral equation of the 
form:  

 

G(x, y) = G
0
(x, y) + λ ⌡⌠ d z K (x, z) V(z) G(z, y) , (9) 

 
The solution to Eq. (9) is written in terms of a 

resolvent kernel, R(x, y).  

G(x, y) = G
0
(x, y) + λ ⌡⌠ d z R(x, z) V(z) G

0
(z, y). (10) 

 
The Fredholm solution expresses the resolvent kernel as the 

ratio,  
 
R(x, y) = D

1
(x, y, λ)/D(λ), (11) 

 
where D

1
(x, y, λ) is called the Fredholm first minor, and 

D(λ) is called the Fredholm determinant.  
The Fredholm series solution expands D

1
 and D as 

power series in λ.  

D
1
(x, y, λ) = K(x, y) – λ ⌡⌠ d z V(z) 

K(x, y)
K(z, y)  

K(x, z)
K(z, z)  + 

 

+ 

λz

2! ⌡⌠
 ⌡⌠ dz dz′ V(z)V(z′) 

K(x, y)
K(z, y)
K(z′, y)

  

K(x, y)
K(z, z)
K(z′, z)

  

K(x, z′)
K(z, z′)
K(z′, z′)

 + ... , 

 

D(λ) = 1 – λ ⌡⌠ dz V(z) K(z, z) + 

 

+ 
λz

2! ⌡⌠
 ⌡⌠ dz dz′ V(z) V(z′) 

K(x, y)
K(z, y)  

K(x, z)
K(z, z)  + ... . (12) 

 

4. DIAGRAMMATIC REPRESENTATION 
 
The series solution can be transformed into pictures 

or Feynman diagrams using the following legend7:  
 

K(x, y) ↔ 
x
y  ,  

 

⌡⌠ d z K(x, y) V(z) K(z, y) ↔ V(z)  ,  

 

⌡⌠ dz K(z, z) V(z) ↔ � ,  

 

⌡⌠ d z K(x, y) K(z, z) V(z) ↔ �  .  

 
The first Fredholm minor, D

1
(x, y, λ), in Eq. (12) 

becomes  
 
D

1
(x, y, λ) =  

 

= – λ( )�– + 
λz

2! ( )� �+ 2  – �– 2  �  + ... , 

 
while the Fredholm determinant, D(λ), in Eq. (12) is  
 

D(λ) = 1 – λ � + 
λ2

2  ( )� � – �  + ... .  

 
The Fredholm determinant can also be written as  
 

D(λ) = exp( )– λ � – 
λz

2  � – 
λ3

3  � – ...  ,  

 
which can be checked by expanding the exponential in a 
power series and comparing with the diagrams or 
equations above.  

The resolvent is the ratio of the two sets of pictures 
above. To order λ, Eq. (11) is  
 
R(x, y, λ) =  
 

= 

 – λ( )� – 

1 – λ � 
 = 

( )1 – λ �  + l

1 – λ �
 =  +

 λ  .  

 
After the division is completely carried out, the result is 
the Neumann series for the resolvent. The diagrammatic 
representation of the Neumann series is  
 

R(x, y, λ) = 
 
+
 
λ  + λ2

 
+
 
λ3  + ... .  

 

In our case, we are considering a generalization of 
the Fredholm series solution in that the kernel, 
K(ξ, ξ

0
) = G(0)(ξ, ξ

0
), Eq. (8), is a matrix. Since matrix 

multiplication does not commute in general, the order in 
which the elements in the determinants in Eq. (12) are 
taken matters. The same applies to the factors of V. This  
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means that the order in which the pictures appear also 
matters. For example, since the kernel is a matrix, then  
 

⌡⌠
dz K(x, y) K(z, z) V(z) ≠ ⌡⌠ d z K(z, z) V(z) K(x, y) ,  

 

or, in pictures,  
 

� ≠ �  .  

 

Furthermore, the resolvent is the ratio of two matrices. 
What this really means is that the resolvent is the matrix 
product of the first minor and the inverse matrix of the 
determinant. Since the matrices do not commute, an 
ordering ambiguity arises. Namely, do we take  
 

R(ξ, ξ
0
; s, λ) = D

1
(ξ, ξ

0
; s, λ) D–1(λ)  

 

or  
 

R(ξ, ξ
0
; s, λ) = D

–1(λ) D
1
(ξ, ξ

0
; s, λ) .   

 

The diagrams can be used to select the proper ordering 
that defines a consistent ordering convention. That is, the 
proper order of terms in the minor D

1
 is set by the need 

to be able to symbolically factor D(λ) out of D
1
 either on 

the left side or the right side. For example, suppose we 
choose the ordering  
 

�  ,  

 

instead of  
 

�   

 

for the O(λ) term in D
1
. In this case, D(λ) factors out of 

D
1
 to the right:  

 

D
1
(ξ, ξ

0
, λ) =  

 

=  – λ( )� –  + ... = 

⎝
⎛

⎠
⎞

 
+

 
λ  ( )1

 
–

 
λ �  + ... .  

 

Therefore, we must use R(ξ, ξ
0
; s, λ) = D

1
(ξ, ξ

0
; s, λ) D–1(λ). 

Otherwise, the denominator will not cancel.  
 

5. UNCOMPENSATED PROPAGATION 
 
We are ready to compute the Fredholm determinant 

for STRS. The result is particularly simple.  
From Eq. (8) we see that K(ξ

1
, ξ

1
) = G(0)(ξ

1
, ξ

1
) is 

just the unit matrix. Thus,  
 

 �  
 

is equal to  
 

λ
–

 ⌡⌠
0

ξ

 d ξ
1
) G(0)(ξ

1
, ξ

1
) V(ξ

1
) = λ ξ V = λ ξ ( )0 0

1 0  . (13) 

 

However, due to the presence of the step function, H(ξi – ξj), 

in G(0)(ξi, ξj), all of the higher–order loops vanish. For 

example, 

ξ
2 � ξ

1
 = 0 ,  ξ

1
ξ
3

 � ξ
2
 = 0   

 
since for the left–hand side loop we must have ξ

1
 > ξ

2
 and 

ξ
2
 > ξ

1
 which is not possible, and for the right–hand side 

loop we must have ξ
1
 > ξ

2
 > ξ

3
 > ξ

1
 which is also 

impossible. Therefore, we are left with  
 

D(λ) = exp( ) – λ �  .  
 
Since V is nilpotent (i.e., V 

2 = 0), the exponential is 
easy to compute. The result is  
 

D(λ) = ( )1  0
–λ ξ 1  .  (14) 

 
and it is clear that the Fredholm determinant never 
vanishes for any λ. Therefore, there are no poles present in 
the STRS propagator. It is known that the asymptotic 
behavior in time of the STRS propagator is governed by a 
saddle point instead of a pole.8,9  

 
6. COMPENSATED PROPAGATION 

 
When phase–only compensation is introduced, the 

new propagator, G
PC

(ξ, ξ
0
; s), satisfies the same integral 

equation, Eq. (7), as the uncompensated case. The only 
item that changes is the propagator at τ = 0 or V = 0, the 

propagator for turbulence only, G
(0)

PC
(ξ, ξ

0
). The 

compensated turbulence–only propagator, G
(0)

PC
(ξ, ξ

0
) is 

the uncompensated propagator plus an additional term to 
account for the new boundary conditions that arise due to 
the introduction of a beacon laser and the correction of 
phase at the ground. Let the compensation coupling for 
transverse spatial mode ê be g(ê). Then,2  
 

G
(0)

PC
(ξ, ξ

0
) = G(0) (ξ, ξ

0
) – g(ê)

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0

  sin(ξ) cos(ξ
0
)

0
  cos(ξ) cos(ξ

0
)

 . (15) 

 
Note that the additional piece does not contain the step 
function in altitude, H(ξ – ξ

0
). The new term in the 

turbulence–only propagator requires more pictures. We 
will represent the new term with double lines:  
 

G
(0)

PC
(ξ, ξ

0
) = G(0) (ξ, ξ

0
) – g(ê)Gbc

(0)(ξ, ξ
0
) ↔ 

x
y – g  

x
y  .  

 
It the computation of the Fredholm determinant, a 

tremendous amount of cancellation occurs. For example, by 
explicit computation using Eq. (15), one can verify that  
 

G bñ
(0)(ξ

1
, ξ

1
)

G bñ
(0)(ξ

2
, ξ

1
)
  
G bñ

(0)(ξ
1
, ξ

2
)

G bñ
(0)(ξ

2
, ξ

2
)

 = 0 ⇒� = � � .  

 
Using the pictures, one can show that the determinant 
reduces to  
 

D(λ) = exp(– λ�)(– λ � – λ2 � – λ3 � – λ4 � – ...). 
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By examining the diagrams above, we note that the 
sum of the loops for λ2 and greater is a single loop, where 
the uncompensated resolvent appears on the left–hand 

side of the loop and the double line G
(0)

PC
 on the right. If 

we represent the Neumann series for the uncompensated 
propagator, G(ξ – ξ

0
; s, λ), by a thick solid line:  

 

⎮ = ⎮ + λ ⎮+ λ2 ⎮ + λ3 ⎮ + ... ,  
 
then the sum of the loops for λ2 and greater that appears 
in the determinant can be represented as  
 

– λ2 �
 
– λ

3 � – λ4 � – ... = – λ2 � ,  

 
and we only have to compute a single loop. The Neumann 
series for the uncompensated propagator can be computed 
using the techniques above. The result is also given in 
Ref. 2. When this single loop is computed, the term  
 

λ �  
 

is cancelled and a common factor of  
 

1 + g λ ⌡⌠
0

ξ

 dξ
1
 
sin(αξ

1
) cos(ξ

1
)

α  ,  α = 1 – λ .  (16) 

 

appears in front. Thus, D(λ) will vanish if this factor 
vanishes. There are λ

0
 that cause this factor to vanish. 

Therefore, the compensated propagator contains poles. 
This is PCI. Recall that λ = – 1/s. Thus, –1/λ

0
 is the 

single mode gain. The gains resulting from Eq. (16) above  

agree with those obtained by other methods,9 and 
references therein.  
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