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Some properties of the generalized Euler transformation (GET), such as the possibility of 
obtaining exact sum of a series, the convergence of a transformed series, and its new representations, 
are considered. Certain criteria of convergence of transformed series are presented and conditions, 
under which the Euler method enables one to obtain a finite expression for the sum of a series, are 
established. The properties of a transformed series are analyzed for the case that the known Padé, 
Padé–Borel, or Padé–Hermite approximants are used as the zero approximation in GET. Different 
ways of parameterization of the coefficients of the transformed series are discussed. The method 
proposed is tested while applied to the exactly solvable quantum-mechanics problem of the Kratzer 
oscillator taken as an example. 

 

Introduction 

The calculations of energy levels of high-excited 
states by the method of effective rotational 
Hamiltonian need for application of the methods of 
series summation. As known,1–10 the series, 
representing the matrix elements of the effective 
rotational Hamiltonian, diverge at large quantum 
numbers of the angular momentum. Earlier, (see, for 
example, Refs. 1–22) various summation methods 
have been proposed to improve calculations in the 
case of high-excited states. However, new 
experimental data obtained on the levels of high-
energy states of some molecules, for example, Í2Î, 

H2S, H3

+
, and others, call for development and 

application of new computational methods, taking 
into account poor convergence of the series.  

This paper considers some properties of the 
generalized Euler transformation (GET),23,24 such as 
the possibility of obtaining exact sum of a series, the 
convergence of the transformed series, and its new 
representations. The Euler transformation was 
successfully applied earlier to the series summation in 
some quantum-mechanics problems, for example, in 
calculating energy levels of an anharmonic oscillator, 
computation of the Stark and Zeeman effects in 
hydrogen atom, summation of the 1/Z expansion in 
the atomic theory (see, for example, Refs. 24 and 
25). The GET method was also applied to calculation 
of the RV energy levels of Í2Î molecule,15 ÑÍ2 
radical,16 and diatomic molecules.26,27 Brief 
description of the GET method is given in this paper.  
 One of the basic properties of the Euler method 
is that it is regular,23 that is, the method gives 
correct sums of convergent series. This property is 
missing in other methods, for example, in the Padé 
method. It should be noted that the GET method 
gives no information about the convergence of the 

transformed series. In any summation method, the 
convergence is of crucial importance, because in the 
case of divergence it is impossible to obtain a 
determinate result. Nevertheless, most papers, dealing 
with the application of methods for summation of 
divergent series in calculating rotational energy levels, 
present no arguments in favor of the series 
convergence. For this reason, in this paper, we give 
some criteria of convergence of the transformed series 
and establish conditions, under which the Euler 
method yields the finite value for the sum. 

The properties of the transformed series are 
considered for the case when the known Padé, Padé–
Borel, and Padé–Hermite approximants are used as 
zero approximation in the GET method. In addition, 
different methods of parameterization of the 
coefficients of the transformed series are presented 
along with the results of testing the method while 
applying it to the exactly solvable problem of 
Kratzer oscillator taken as an example.  

1. Generalized Euler transformation 

For convenience, this Section presents briefly 
the basic equations of the GET method.24 Let the 
function f(z) be expanded in the following series 
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The approximating function can be used for the 
transformation of the series in the following way. 
Add the approximant to the right-hand side of 
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Eq. (1) and then subtract it, but in the form of a 

series. Then add 
( )d

d

g z
z

z
 and subtract it again, but in 

the form of a series. Repeating this procedure, we can 
exclude all power terms from the right-hand side of 
Eq. (1) and thus transform the series (1) into the 
functional one. The transformed series has the form  
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The transformations presented here are formally 
identical, and the transformed expression restores the 
initial series (1) when expanded into the Taylor 
series. It is just this expression that is referred to as a 
“sum of the series.”  

2. Conditions of convergence  
of the transformed series  

It is intuitively clear that if the “proper” 
approximant is chosen, so that the coefficients of the 
Taylor series f(z) and g(z) are similar in some sense, 
then the “new” series (3) must have better properties 
than the initial one, that is, it must converge faster 

in view of the relation ( )
0

1 0

n

r

r

b

r
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∑ . However, it 

is desirable to have more definite conditions of 
convergence. We will specify two such necessary 
conditions  

1) If at z ≤ z0  
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then the series (3) converges in the specified region.  
Indeed, 
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Since the last series converges at any z, the 
transformed series, obviously, converges at 0z z≤  

too. 
Thus, if the approximant derivatives and the 

coefficients ,
n n n

a f g=  considered as functions of the 

index n, increase with increasing n slower than by 
the exponential law, then the series transformed by 
the Euler method converges.  

2) If at z ≤ z0 
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then the radius of convergence of the series (3) 

{ }0min , 1z z B≤ .  

Let us prove this:  
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Since the last series converges at 1 ,z B≤  the above 

estimate follows from here.  
The approximating function g(z) can be chosen 

in different ways. As a consequence, the ratios 
ar = fr/gr can have different dependence on r. It is 
useful to introduce the estimates of the coefficients of 
the transformed series, assuming a certain dependence 
of the ratios ar = fr/gr on the index r. This will help 
one to establish some criteria, determining the 
“quality” of the approximant and to give a convenient 
parameterization of the transformed series. It should be 
noted here that the estimates of the coefficients fr of 
the initial series of the perturbation theory (PT) can 
be obtained in the standard way, that is, based on 
the quasi-classical approach, described, for example, 
in Ref. 28. On the other hand, it is not difficult to 
obtain the coefficients of the approximant gr 
expansion into the Taylor series. However, let us 
first establish the following fact.  

3) If the approximating function g(z) is chosen 
so that  

 2
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then GET gives the finite expression for the sum of 
the series.  

Indeed, in this case  
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all the coefficients Dn, n > K vanish. If the 
condition (8) is fulfilled, the generalized Euler 
transformation yields a finite expression for the sum 
of the series  
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and the series can be summed exactly. Thus, the 
approximant can be chosen so that it only 
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qualitatively reproduces the derivatives of the initial 
function fr; they should be approximately 
proportional, then GET yields the finite expression 
for the sum of the series. In this case, the difference 
between the initial function and the approximant can 
be arbitrary and quite large. This property of GET is 
very useful, since it allows rough approximations to 
be used, if only the ratio fr/gr does not change too 
quickly with the increasing index r.  

3. Transformed series 

In the method of effective Hamiltonians, we 
usually know only several first terms of the initial 
series (1) (that is, the coefficients fr, r = 0, …, N), 
which are determined through the fitting to 
experimental energy levels or transition frequencies. 
Therefore, it is quite useful to consider different ways 
of approximation of the ratios ar = fr/gr in order to 
obtain new representations for matrix effective 
Hamiltonians, including new fitted parameters.  

In making particular calculations, especially for 
light nonrigid molecules having small moments of 
inertia, the Padé2 and Padé–Borel6 approximants or 
generating functions10 are used. These approximants 
are defined so that they reproduce accurately first N 
coefficients f0, f1, f2, …, fN of the initial series (1). If 
these approximants are used as zero approximation in 
the Euler method, the transformed series becomes 
simpler. Indeed, if 
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and the transformed series (3) has the form  
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The expressions for the coefficients Dn of the 
transformed series also become simpler.  

In Eq. (13) the first term g(z) is an 
approximant, that is, the approximate expression for 
the rotational-vibrational energy. The second term is 
a correction to this approximation, following from 
the Euler transformation. The coefficients of the 
series in braces depend on the unknown parameters 

1 1 2 2, , ...,N N N Nf g f g
+ + + +

 and it is desirable to perform 

new parameterization of the transformed series, using 
certain estimates of these ratios and keeping in mind 
the fitting of the parameters of the new 
representation to experimental data. Obviously, this 
may improve the calculations of the rotational-
vibrational energy levels.  

Consider the following parameterization of the 
ratios ar = fr/gr: 
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Here ω(r) is the “main” part of the ratios between 
the coefficients of the summed series and the 
approximant (which is assumed to be known); γi are 
some coefficients. In this case, the coefficients 

n
D  of 

the transformed series can be represented in the form  
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Now the transformed series can be represented as 
follows  
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Thus, we obtain the new representation of the 
transformed series, in which the new parameters γi 
are introduced. This approach is an analog of the 
summation method, known as a nonlinear sequence 
transformation.29 In this method, the remainder in 
the estimates of the series sum is also represented in 
the form (12).  

In the method of effective Hamiltonians, the 
summed series (that is, f(z) in our case) are matrix 
elements. For example, for molecules like water 
molecule, the most significant part of the summed 
series is the so-called Jz-sequence,9 including the 
rotational constant A and the centrifugal distortion 
constants Δk, Δjk, Δj, Hk, and so on. To determine 
ω(r) in this case, it is possible to take the rth term of 
the expansion of the generating function 

{ }2(2/ ) 1 1
z

G J= α +α −  into the Taylor series. The 

parameters γi can be considered as values determined 
from the fitting to experimental energy levels. Thus, 
the use of the approximations of the form (15) 
introduces a new parameterization in the effective 
Hamiltonian.  

Consider now some simplest cases.  
Exponential approximation. If the approximating 

function is chosen so that  
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then the coefficients of the transformed series become 
simpler. It is assumed here that at large r the 
difference between the expansion coefficients of the 
approximant and the initial series becomes close to 
γ0β

r at the increase of r. Use the relation31:  
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Factorial approximation. Assume now that the 
difference between the coefficients of the 
approximant and the initial series is determined by 
the factorial function  
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The estimates of this kind are obtained for the terms 
of the PT series of the anharmonic oscillator. In this 
case, one fails to calculate exactly the sums (17), and 

n

iT  are to be determined through direct calculations. 

In the method of effective Hamiltonians, Eq. (23) 
gives a convenient parameterization of the 
transformed series in calculating the rotational-
vibrational energy levels. The values of β, γi can be 
found through the fitting to experimental energy 
levels.  

The results presented show that, regardless of 
the rate of divergence of the initial series, the Euler 
method can yield a correct result, if the 
approximating function is chosen properly, that is, 
either the condition (4) or (6) is fulfilled. This 
circumstance appears to be very important, and the 
problem can be thus reduced to the selection of the 
approximating function regardless of the divergence 
rate  of  the  initial  series of the perturbation theory. 

4. Application to exactly solvable 
models 

Consider now the application of GET to series 
summation in the exactly solvable problem of the 
Kratzer oscillator.  

The Kratzer potential has the form  
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The solution of the Schrödinger equation with this 
potential can be found in the closed form; the 
equation for the energy levels has the form30: 
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(24) 

Here μ is the reduced mass, and the energy is 
measured from the zero level ν = 0, J = 0.  

We use the problem of the Kratzer oscillator to 
test the GET method. The simplest Padé approximant 
[1/1] is used as an approximation. At x = – b the 
Kratzer function (24) has a bifurcation point of the 
second-order, and the series diverges starting from 
J = 23 (Fig. 1). 

 

 

Fig. 1. Energy levels of the Kratzer oscillator (curve 1) and 
the sum of the series (1) (curve 2). 

 

Figure 2 demonstrates the relative error 
EKr[J(J + 1]/EPadé[J(J + 1)] in the calculation of 
rotational energy levels at V = 0 and 10 of the 
Kratzer oscillator by the GET method (curves 1–4) 
and the calculation with the Padé approximant  
[1/1] (5).  

(21)
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 a b 

Fig. 2. Relative error EKr[J(J + 1]/EPadé[J(J + 1)] in the calculation of rotational energy levels for V = 0 (a) and V = 10 (b). 

 

The dependence of the rotational energy levels 
of the vibrational state V = 10 on the quantum 
number J is shown in Fig. 3.  

 

 

Fig. 3. Dependence of the rotational energy levels of the 
vibrational state V = 10 on the quantum number J: exact 
equation (1); calculation by the GET method, N = 5, 10, 
15, 20 (2–5); calculation with the Padé approximant  
[1/1] (6). 
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