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In this paper we discuss few–parameter models proposed for estimation of cross 
section of extinction, scattering, and absorption of light by atmospheric aerosol. 
Estimation of the accuracy of approximate formulas are presented for the case of 
polydisperse ensembles of spherical particles with quasi–Gaussian and gamma size 
distributions as well as for ensembles of randomly oriented spheroids with the 
refractive index mr = 1.5 + i 0.02 . 

 
INTRODUCTION 

 
To estimate effects of atmospheric aerosol on the 

processes of radiation propagation through the 
atmosphere, quantitative information on the scattering 
properties of aerosol particles is needed. Among great 
variety of aerosol particles of various origin certain 
contribution to the radiation processes is made by the 
particles of mineral origin which have nonspherical shapes 
and are characterized by complicated distribution by size, 
shape, and orientation. 

Exact calculations for the ensembles of nonspherical 
particles require a complex mathematical means, they are 
effective for the axially symmetric particles with smooth 
surface, and limited by the range of particle size 
comparable to the wavelength of incident radiation1–3; 
for ellipsoidal particles4 computer time increases by 
several orders as compared with this for spheroidal 
particles.5 

This paper presents an approximate estimation of the 
cross section of extinction, scattering, and absorption for 
an elementary volume containing randomly oriented 
nonspherical particles. The data of an approximate 
estimation are compared with the results of the exact 
theory for polydisperse ensembles of spherical particles 
with the quasi–Gaussian and gamma size–distributions 
and randomly oriented spheroidal particles. Refractive 
index of the particles m

r
 = 1.5 + i 0.02 corresponds to the 

continental aerosol.6  
Creation of few–parameter models is based on 

conformity of the initial and approximating ensembles. 
Some microstructural parameters of these ensembles are 
equal, for example, the volume, projection square, and 
particle surface which are averaged over an ensemble (for 
the convex particles equality of the projection squares 
means the equality of the surfaces7); in this case for the 
approximate estimation the simplest representatives of the 
class of approximating ensembles with the same 
microstructural parameters, for example, ensembles of 
polydisperse spherical particles are chosen. 

 
 

 

1. FEW–PARAMETER MODELS. GENERAL 
APPROACH 

 
Cross sections of extinction, scattering and absorption 

for a polydisperse ensemble of particles have the form
 
 

<C(mr, λ)> = ⌡⌠
r
min

r
max

 C(mr, λ, r) f(r) dr, (1) 

 
where f(r) is the particle size–distribution density 
function; [r

min
, r

max
] is the interval of change of 

dimensional parameters; λ is the wavelength of incident 
radiation. In the below discussion, the refractive index 
and wavelength are omitted in the expressions.  

In the case of a polydisperse ensemble of 
nonspherical particles an integral of the type (1) has a 
more complicated form and it is necessary to integrate 
over particle orientations. Conventionally the integrals of 
the type (1) are estimated using the quadrature formulas 
ignoring microstructure of a suspension. Our purpose is to 
make a few–parameter estimation of integrals of the type 
(1) allowing for microstructure of a suspension and to 
derive corresponding quadrature formulas. 

In the general case creation of mathematical models 
is based on a mathematical concept of equivalence ratio or 
"equality". When dealing with mathematical objects it is 
necessary to introduce a concept of equivalence or 
"equality". A relation between two mathematical objects 

(a ∼
r
 b) is named as the equivalence only when the 

following conditions are fulfilled8: 

1) a ∼
r
 a (reflectivity); 

2) if a ∼
r
 b means b ∼

r
 a (symmetry); 

3) if a ∼
r
 b and b ∼

r
 c mean a ∼

r
 c (transitivity). 

 
In this case all mathematical objects of the model 

are distributed among equivalence classes without 
common elements. 
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As a rule, parameters of mathematical models 
coincide with some major parameters of a real object. An 
equality relation of the model parameters determines the 
equivalence and thus divides all mathematical objects into 
nonoverlapping equivalence classes. In this case, within 
the limits of one of these classes, the objects can not be 
distinguished. Therefore, any representative of the class 
characterizes this class as a whole. Based on theoretical or 
other considerations, the simplest element can be taken for 
such a representative. The relation between the optical 
equivalence classes and equivalence classes being assigned 
using the ratio of parameter equality is of interest in the 
optics of disperse media.  

The elementary scattering volume is assumed to 
contain randomly oriented particles and characterized by the 
following microstructural parameters averaged over an 
ensemble: the projection square (<S>), volume (<V>), the 
square of the projection square (<S 

2>), and the square of 
the volume (<V 

2>). The choice of these parameters is based 
on the following considerations: 

1) for particles which are smaller than the wavelength 
the absorption cross section is proportional to <V> and the 
scattering cross section is proportional to <V 

2>: 
2) for large particles the cross sections of scattering 

and absorption are equal to <S> in the size region where the 
efficiency factors of scattering and absorption are equal to 
unity, the scattering intensity within small angles is 
proportional to (<S 

2>) in the Fraunhofer diffraction region. 
An ensemble approximating the elementary volume is 

chosen among the simplest ones in the form of discrete 
distribution of spherical particles with weights which are 
considered as concentration coefficients. The cross sections 
of extinction, scattering, and absorption of the elementary 
volume are approximated by the sections of the discrete 
distribution of spherical particles. Let us consider the 
families of the few–parameter models produced by four 
microstructural parameters. 

 
1.1. Single–parameter models 

 
Each of the microstructural parameters mentioned 

above creates a single–parameter model which has one of its 
parameters equal to the elementary volume. In particular, 
the models of equivolume and equisurface spherical particle 
are among the single–parameter models. 

 
1.2. Two–parameter models 

 
A set of two–parameter models consists of six elements, 

i.e., a number of the elements equals to C 
4
2 (a number of 

combinations of four elements taken two at a time). In this 
case the cross sections of extinction, scattering, and absorption 
are estimated proceeding from an equality of two 
microstructural parameters of the elementary volume and 
approximating ensemble consisting of spherical particles of 
the same size with some weighting factor: 

 

<S>, <V>; <C> = 
16 <S>3

9 π <V>2 C(ref),  ref = 
3
4 

<V>
<S>; (2) 

 

<S>, <S2>; <C> = 
<S>2

<S2>
 C(ref),  ref = ⎝

⎛
⎠
⎞<S2>

π<S>

1/2

; (3) 

 

<S>, <V 
2>; <C>=⎝

⎛
⎠
⎞16 <S>3

9 π <V 
2>

1/2

C(ref), 

 

ref =⎝
⎛

⎠
⎞9 <V 

2>
16 π <S>

1/4

; (4) 

 

<V>, <S2>;  <C> = 
81 π2 <V>4

256 <S2>3  C(ref), ref = 
4 <S 

2>
3 π <V> ; (5) 

 

<V>, <V 
2>; <C> = 

<V>2

<V 
2>

 C(ref), ref =⎝
⎛

⎠
⎞3<V 

2>
4 π <V>

1/3

 ; (6) 

 

<S2>, <V 
2>; <C> = 

256 <S2>3

81 π2 <V 
2>2 C(ref),  

 

ref = ⎝
⎛

⎠
⎞9 <V 

2>
16 π <S2>1/2

1/4

 ; (7) 

 
1.3. Three–parameter models 

 
A number of three–parameter models being created by 

four microstructural parameters equals to C 
4
3 = 4 (a number 

of combinations of four elements taken three at a time). 
There is a certain arbitrariness in choice of approximating 
ensemble, and, on the contrary to the two–parameter 
models, where a solution is unique, choice of the model 
having three microstructural parameters equal to the 
elementary volume is not unique. 

Let us consider an estimation of integral of the type 
(1) in the form 

<C> =
 
[p

1
 C(r 

(1)
ef ) + p

2
 C(r 

(2)
ef )] / 2, (8) 

 

where r 
(i)
ef  = rev/p i

1/3, rev is the radius of a particle having 

an elementary volume <V>. For this choice the 
automatically approximating ensemble has a volume equal 
to the elementary volume and weighting factors pi can be 

found from the condition of equality of other two 
microstructural parameters. 
 

<S>, <V>, <V 
2>; 

⎩
⎨
⎧p1/3

1
 + p1/3

2
 = 2 <S>/π r 

2
ev;

p–1
1

 + p–1
2

 = 2 <V 
2>/<V>2;

 (9) 

 

<S>, <V>, <S2>; 
⎩
⎨
⎧p1/3

1
 + p1/3

2
 = 2 <S>/π r 

2
ev;

p–1/3
1

 + p–1/3
2

 = 2 <S2>/π2 r 
4
ev;

 (10) 

 

<V>, <S2>, <V 
2>; 

⎩
⎨
⎧p–1/3

1
 + p–1/3

2
 = 2 <S2>/π2 r 

4
ev;

p–1
1

 + p–1
2

 = 2 <V 
2>/<V>2;

 (11) 

 

For the next model r 
(i)
ef  = res / p i

1/2, res is the radius of a 

spherical particle having the projection square <S>  
 

<S>, <S2>, <V 
2>; 

⎩
⎨
⎧

 

p–1
1

 + p–1
2

 = 2 <S2>/<S>2;

p–2
1

 + p–2
2

 = 9 <V 
2>/8π2 r 

6
es;

 (12) 

 

Each of these systems of equations has an analytical 
solution. However, for certain relationships between the 
microstructural parameters this solution can take negative 
values. In this case it is necessary to choose some other 
values of pi, r ef

(i) assuming that the solution is positive and 

microstructure parameters are equal.  
In the present paper we consider the few–parameter 

models only which admit the analytical determination of the 
parameters of approximating ensemble. 
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2. CROSS SECTIONS FOR SPHERICAL PARTICLES 
 
Cross sections of extinction, scattering, and absorption 

for spherical particles are calculated by the formulas from 
Ref. 9: 

 

C
ext

 = 2π/k2 ∑
n=1

∞

 (2n + 1) Re (an + bn); 

 

C
sca

 = 2π/k2 ∑
n=1

∞

 (2n + 1) (⏐an⏐2 + ⏐bn⏐2); (13) 

 

C
abs

 = C
ext

 – C
sca

, 
 

where k = 2π/λ is the wave number; an and bn are the Mie 

coefficients.9 The cross section of a ensemble of polydisperse 
particles is described by Eq. (1). Relative error of a few–
parameter model for the estimation (1) is calculated by the 
formula 
 

F = [(<C> – <C> (I))/<C>] 100%, (14) 
 

where I is the number of the formula of a few–parameter 
model. 

 
2.1. Quasi–Gaussian distribution 

 
A shape of the distribution curve is similar to the 

curve for normal distribution, and it has the density 
function which differ from zero on a finite interval. 
Moreover, this distribution makes it possible to simulate 
nonsymmetric distributions. 

The density function has the form10
  

 

f(r) = {  (1 – z2)2 at –1 ≤ z ≤ 1,
0 at ⏐z⏐ > 1,

 (15) 

z
 
= c (r – r

0
)/Δ r

0
 , c = 2(1 – 2–1/2)1/2  

 

(where r
0
 is the modal or mean size for a symmetric 

distribution; Δ is the distribution full width at half 
maximum of the density function) and characterizes the 
distribution variance Δ g 3σ/r

0
, σ is the rms deviation. A 

symmetric distribution shape (15) is assigned by the 
distribution widths ΔL and ΔR on the left and on the right 

of the modal size, respectively. It should be noted that the 
normalizing constant for the distribution (15) has the form 
15/8c /(a

0
(ΔL + ΔR)). For a symmetric distribution 

(Δ = ΔL = ΔR) the values averaged over an ensemble have 

the form 
 

<S> = π r2
0
 (1 + Δ2 / 7c2), 

 

<V> = (4π / 3) r3
0
 (1 + 3Δ2 / 7c2), 

 

<S2> = π2 r4
0
 (1 + 6Δ2 / 7c2 + Δ4 / 21c4), (16) 

 

<V 
2> = (16π2

 / 9) r6
0
 (1 + 15Δ2

 / 7c2 + 5Δ4
 / 7c4 + 5Δ6

 / 231c6). 

 
2.2. Two–parameter gamma–distribution 

 
The density function for the gamma–distribution is 

written in the form11  
 

f(r) = {  C r 
μ exp(–β r), r ≥ 0, β > 0, μ > –1,

0, r < 0,
 (17) 

where C is the normalizing constant equal to 

β 
μ+1/ Γ(μ + 1); Γ(μ) is the gamma–function. The mean 

radius r
0
 = (μ + 1)/β, the parameter μ characterizes the 

distribution width, the relative rms deviation (relative to 
r
0
) is σ = (μ + 1)–1/2, and the values averaged over an 

ensemble are as follows11  
 

<S> = π ((μ + 1) (μ + 2) / μ2) r 
2
0
. 

<V> = (4π/3) ((μ + 1) (μ + 2) (μ + 3)/μ3) r3
0
, 

<S2> = π2 ((μ + 1) (μ + 2) (μ + 3) (μ + 4) / μ4) r4
0
, (18) 

<V 
2>

 
= (16π2 / 9) ((μ + 1) (μ + 2) (μ + 3) (μ + 4) (μ + 5) × 

× (μ + 6) / μ6) r6
0
. 

 
3. THE ABSORPTION CROSS SECTION OF THE 

RANDOMLY ORIENTED SPHEROIDAL PARTICLES 
 
To calculate the absorption cross sections for the 

suspension of randomly oriented spheroidal particles the 
analytical formulas for the cross section of absorption and 
scattering expressed in terms of the elements of the T–
matrix were used12,13  

 
 

<C
ext

> = – 
2π
k2 Re ∑

m=0

∞

  ∑
n=max(m,1)

∞

  (2 – δm0
) (t 11omn, omn + t 22emn, emn), 

 

<C
sca

> = 
2p

k2 ∑
n=1

∞

  ∑
n'=1

∞

  ∑
m=0

m=min(n, n')

  (2–δm0
) Dmn 

D –1
mn'

× 

 

× (⏐t 11emn,
 emn'

⏐2+⏐t 12emn,
 omn'

⏐2+⏐t 21omn, emn'
⏐2+⏐t 22omn, omn'

⏐2),  

(19) 
<C

abs
> = <C

ext
> – <C

sca
>. 

 

The spheroid surface in the spherical coordinate system 
obeys the following equation: 
 

r(θ, ϕ) = a (sin2θ + (a2 / b2) cos2θ)–1/2, (20) 
 

where θ and ϕ are the zenith and azimuth angles; b is the 
vertical half–axis of rotation; a is the horizontal half–axis. 
The shape parameter ε is determined as a ratio of the larger 
parameter to the smaller one 

 

ε = {  b/a for the stretched spheroids ,
a/b for the compressed spheroids .  (21) 

 

By varying the shape parameter we can simulate the change 
of a particle shape in a wide range from the stick–shaped to 
disk–shaped. 

For a monodisperse ensemble of randomly oriented 
spheroidal particles the values averaged over the ensemble 
have the form 
 

<S> = π/2 [a2 + ab (arcsin e/e)] for the stretched spheroids, 
 

<S> = π/2 [a2
 + (b2/ 2e) ln((1 + e)/(1 – e))] for the 

compressed spheroids, 
 

<V> = 4π/3 ba2, (22) 

<S2> = π2 a2 b2 [(ε–2 + 2)/3] for the stretched spheroids, 

<S2> = π2 a2 b2 [(ε2 + 2)/3] for the compressed spheroids, 

<V 
2> = (16π2/9) b2 a4, 

where e = (ε2 – 1)1/2/ε. 
 



616   Atmos. Oceanic Opt.  /August  1994/  Vol. 7,  No. 8 L.E. Paramonov 
 
 

 

3.1. Optical equivalence of an ensemble of randomly 
oriented spheroidal particles and a polydisperse ensemble 

of spherical particles 
 
In Ref. 14 it was shown in the Rayleigh–Gans–Debye 

approximation15 that a monodisperse ensemble of randomly 
oriented spheroids is optically equivalent to a polydisperse 
ensemble of spherical particles with the weighting function 
 

f(r) = 

⎩⎪
⎨
⎪⎧

 

a4
 b e–1 (r 

2 – a2 )–1/2 r–5, a ≤ r ≤ b,
for the stretched spheroids,
a3

 b2
 e–1 (a2 – r 

2 )–1/2 r–5, b ≤ r ≤ a,
for the compressed spheroids.

 (23) 

 
In the anomalous diffraction approximation15 a direct 

test shows that the cross sections of extinction, scattering, and 
absorption of a monodisperse ensemble of randomly oriented 
spheroids are identical to corresponding cross sections of a 
polydisperse ensemble of spherical particles with the weighting 
function (23). Note, also that the volume, projection squares, 
surface squares, and squares of the volumes, which are 
averaged over an ensemble of the suspension mentioned above, 
are the same. Therefore, the estimations of these cross sections 
by the few–parameter models (2), (4), (6), and (9) are the 
same too. Under the conditions of anomalous diffraction15 for 
the calculations of the cross sections of extinction, scattering, 
and absorption of randomly oriented spheroids the above noted 
optical equivalence ought to be used changing the calculations 
by T–matrix method to simpler ones using Eq. (23) and the 
Mie theory. 

 
4. CALCULATIONAL RESULTS 

 
In this section we present some results of calculations of 

the cross sections of extinction, scattering, and absorption by 
approximation formulas (2), (8)–(10), and also using the 
exact theory by the formulas (1), (19), and (23). The relative 
error is estimated by formula (14). 

 
TABLE I. The upper boundary of the relative error (9) 
and (10) for the quasi–Gaussian distribution. 
 

ρ
0
 Δ 

 0.1 0.2 0.5 1 

0.1 < 0.1 < 0.1 0.7 3.3 

1 < 0.1 < 0.1 0.5 2.0 

2 < 0.1 < 0.1 3.4 1.3 

5 1.3 5.4 5.8 11 

10 2.0 2.5 4.8 7.8 

50 0.1 0.4 1.0 0.6 

100 0.1 < 0.1 0.1 0.2 

200 0.05 0.1 0.1 0.1 

 
Table I presents the upper boundary of the absolute 

value of the relative error (14) for the three–parameter models 
(9) and (10) simultaneously for the cross sections of 
extinction, scattering, and absorption as a function of the 
modal diffraction parameter ρ

0
 (ρ

0
 = k r

0
) and distribution 

width Δ. The maximum error is not more than 11%, and it 
characterizes the particles which have the mean size 
comparable with the wavelength of incident radiation in the 
visible region. The maximum error for the two–parameter 
model (2) frequently used in the optics of biological media16 is  

not more than 27% and, for the scattering cross sections in the 
region of small particles, compared to the wavelength of 
incident radiation. It is connected with the difference between 
the microstructural parameter <V 

2> of the approximated and 
approximating ensembles. In this case the error decreases but 
the size of particles (ρ

0
 > 2) increases and has the order 

presented in Table I. 
Table II presents the relative error for three–parameter 

model (9) when estimating the cross sections of extinction 
(the values in the numerator) and scattering (the values in 
the denominator) for a polydisperse ensemble of spherical 
particles and gamma–distribution as a function of the 
parameters μ and β.  

 
TABLE II. The relative error (9) for gamma–distribution. 
 

μ β 

 0.5 1 2 5 10 20 

0.5 –20/–
26 

13/15 5.5/5.8 –6.6/–
8.4 

–2.2/–
4.3 

–0.1/–
0.1 

1 –6.5/–
9.5 

1.7/2.6 6.7/6.9 –4.3/–
5.0 

–2.8/–
5.0 

–0.1/–
0.1 

2 16/21 –13/–
15 

4.9/5.9 –5.7/–
5.9 

–3.8/–
6.0 

–0.2/–
0.3 

5 –4.8/–
7.3 

–4.9/–
6.1 

3.6/3.8 2.8/2.7 –2.6/–
3.5 

–0.5/–
0.9 

10 3.2/5.4 –9.1/–
13 

–13/–
15 

–2.1/–
2.2 

–3.5/–
3.5 

–1.3/–
1.9 

20 0.6/1.1 0.1/0.3 2.4/4.3 –0.2/–
0.4 

–2.6/–
2.6 

0.9/1.1

 
Note, that the estimations (9) and (10) are close, and 

they differ by less than 5%. The absolute value of the 
relative error (9) and (10) is less than 5% when estimating 
the absorption cross section. For the two–parameter model 
(2) this difference is 13%. At the same time the latter model 
can not be used for estimation of the cross sections of 
extinction and scattering (1), and corresponding values 
differ by several times.  

 

 
 

FIG. 1. The efficiency factors of extinction, scattering, 
and absorption of randomly oriented compressed spheroids 
(ε = 2) which are calculated by the formulas (19) (heavy 
solid curve), (23) (dashed curve), (8) and (9) (solid 
curve); the lower solid curve is for the formulas (19), 
(23), (8), and (9) as functions of the maximum 
diffractional parameter ρ.  
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FIG. 2. The same as in Fig. 1 but for stretched spheroids 
(ε = 2). 

 

Figures 1 and 2 present the efficiency factors of 
extinction, scattering, and absorption 
 

<Q
ext

> = <C
ext

>/<S> ; <Q
sca

> = <C
sca

>/<S> ; 

<Q
abs

>
 
= <Q

ext
> – <Q

sca
>,  (24) 

 

calculated by the exact formulas (19) for randomly oriented 
spheroidal particles, by the Mie formulas for the equivalent 
polydisperse suspension of spherical particles with the 
distribution (23), and with the use of the three–parameter 
model (9) as a function of the maximum spheroid diffraction 
parameter ρ.  

The estimation of the cross sections of extinction, 
scattering, and absorption by formula (23) coincides with the 
calculations by the exact theory. It should be expected that 
the error will be decrease with increasing size because of 
fulfilled conditions of the anomalous diffraction approximation 
(ρ . 1) under which ensemble of randomly oriented spheroids 
is equivalent to the polydisperse ensemble of spherical 
particles (23) what is confirmed by direct calculations. 
 

DISCUSSION 
 

In the cases considered the cross sections of extinction, 
scattering, and absorption are mainly determined by four 
microstructure parameters of an elementary volume. It is 
confirmed by the efficiency of the few–parameter 
estimations. The equivalence classes which are assigned by 
an equality of the microstructure parameters can be 
considered as the classes of optical equivalence with a 
certain error. In this case the formulation can be possible 
and solution can be obtained for the inverse problems on the 
classes of optical equivalence and estimation of the 
microstructure parameters of an elementary volume. 

Use of the few–parameters estimations allows us to 
simplify essentially the calculation of the cross sections of  

extinction, scattering, and absorption for the elementary 
volume containing randomly oriented particles of different 
size. 

The use of optical equivalence of randomly oriented 
spheroidal and spherical particles (23) makes it possible to 
study the optical properties of nonspherical particles in the 
whole range of the dimensional parameters in spite of the 
restrictions of  
T–matrix method.1–3  

It should be noted in conclusion that all the above 
mentioned is justified in the whole measure for the hydrosol 
particles of ocean suspension, biological suspensions, 
suspensions of erythrocytes and leukocytes, in particular, 
the absorption of the biological suspension is determined by 
<S>, <V>, and absorption by the cell substance.17  
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