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In this paper we consider the problems on optimal regulation of aerosol sources 
in the ground atmospheric layer, estimation of sources parameters, and optimization of 
the observational network. Analysis is made based on semiempirical equation of 
turbulent diffusion. To illustrate the approach used, we give examples of solutions of 
the inverse problems on estimating capacity and location of sources. Examples of 
optimal distribution of the observational points taking into account meteorological 
situation and configuration of aerosol sources are given in this paper. We also present 
some results of numerical experiments on modeling optimal modes of treatment of 
agricultural crops with aerosols produced by a generator capable to regulate disperse 
composition of aerosol. 

 
Investigations of spreading and accumulation of 

pollutants, peculiarities of their local circulations and 
spatiotemporal distributions are the basis for an objective 
estimate of the state of the air basin and tendencies in air 
pollution variations. Mathematical simulation plays a 
significant role in these investigations. Along with the 
conventional statements of the problems it allows one to study 
new problems arising in the monitoring of air pollution, the 
regulation of sources, their optimum location, etc. 

The problems of optimum control of aerosol sources, 
the estimation of zones of their impact from observational 
data and their parameters are considered. The problem on 
optimization of observational system is considered 
separately. 

Let the point source of pollution be in a tree–
dimensional domain Ω = ω×[0, H]. The location and the 
capacity of this source are described by the quantities 
X = (X, Y, Z) ∈ Ω and Q, respectively. The following 
model is used to describe the transport of pollution1,2: 
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Here u is the vector of wind velocity with the components u, 
v, and w ; p is the function determining the rate of change in 
concentration q(x, t) due to chemical reactions;  
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 is the operator describing the 

turbulent exchange in vertical and horizontal directions; S is 
the lateral boundary of the domain Ω; f
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are the functions characterizing the location and the capacity 
of known sources inside the domain Ω

T
 = Ω × [0, T] and at 

its boundary; γ(t) = 0 at t ≤ t
0 

and γ(t) = 1 at t > t
0
 > 0 (δ 

is delta function; γ is the parameter characterizing the time 
of source operation; ν and μ are the coefficients of turbulent 
exchange in vertical and horizontal directions). 

1. INVERSE PROBLEMS OF POLLUTION 
DISPERSION. PLANNING OF OBSERVATIONS 
 

A. Estimation of the source strength 
 
Let us assume that the right–hand part of Eq. (1) has 

the form 
 

f(x, t) = ∑
m=1

M

 θ
m 

f
m
(x, t) , (4) 

 
where f

m
(x, t) are the functions describing the source 

location and the regime of its operation in time, θ
m
 is the 

source capacity, m = 1, M . 

Then, by virtue of the superposition principle, a 
solution of the problem (1)–(3) can be represented as 
 

q(x, t, θ) = Φ(x, t) + ∑
m=1
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 θ
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q
m
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where q

m
(x, t) is the fundamental solution corresponding to 

the mth source, and Φ(x, t) is the solution of Eq. (1) with 
zero right–hand part and boundary conditions (2) and (3). 

Let us assume that measurements are performed in the 
points x

1
, x

2
, ..., x

N
 ∈ Ω , then 
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Here E is the operation of mathematical expectation, δ

nn'
 is 

the Kroneker symbol, and τ is the total period of 
observations. 

Assuming that the goal function is the rms deviation of 
computed and measured concentrations of a pollutant, an 
estimate of the source capacity3 is obtained in an explicit form 
 

θ
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 = C–1 Y , (7) 
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where C is the informational Fisher matrix,  

Y = ∑
i=1
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, i = 1, N  are the weights of 

measurements. 
The dependence given by Eqs. (5) and (6) is the linear 

regression with respect to the vector θ. For the optimum 
planning of observations it is sufficient to use the methods 
proposed in Ref. 4. 

Figure 1 shows optimum design for observations for 
the system of linear ground–based sources of pollution.5 
The points of local maxima of variance of the near–ground 
concentration field are the points of the optimum 
disposition. As shown in Fig. 1 these are the points of 
intersection of linear sources. 
 

 
 
FIG. 1. Trace of variance matrix of near–ground 
concentration field (dashed lines correspond to source 
locations). 
 

B. Determination of location and capacity of a source 
 
Both the capacity of a source θ and its location X are 

the sought parameters. In this case the regression function is 
given implicitly, and a numerical solution of the 
problem (1)–(3) is required for its determination. The 
optimum design of observations depends nonlinearly on the 
parameters θ and X, and only its local representation is 
possible. 

The search of optimum local design is realized by the 
following procedure of sequential designing6

: 
1) The search experiment is carried out using the plan 

ε
N
 , ε

N
 is chosen from the condition of nondegeneration of 

the Fisher matrix. 

2) Then estimations of θ

∧

 and X are calculated 
according to this plan by the least–square method. 

3) The point 
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is then found, where d(x, ε
N
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∧

X) is the variance of the 

concentration field. 
4) The additional observation is carried out at the point 

x
N + 1 

. Then the operations from second to fourth are 

repeated. 

The solution of the inverse problem on determining the 
source parameters θ and X is simplified when we use the 
property of dual representation of a linear functional 
depending on the concentration using direct and conjugate 
equations of pollutant transport. 

Figure 2 presents an example of the solution of the 
inverse problem. Isolines of the goal function are shown in this 
figure. The source location coinciding with the minimum of 
the goal function is denoted by the asterisk, and the positions 
of observation points are marked with squares. 

 

 
 

FIG. 2. Isolines of goal function: ï corresponds to location 
of observation points, ∗ – to actual location of a point 
source, and + – to reconstructed location of a point 
source. 

 
C. Reconstruction of the near–ground pollutant 

concentration 
 
The inverse problem on reconstruction of aerosol 

pollutant concentration using the sparse observation network 
is considered for the sources located in the near–ground 
atmospheric layer. The solution of the problem (1)–(3) under 
the assumption of the power approximation of wind profiles 
and turbulent exchange coefficients is represented in the form 
of the nonlinear regression function of three parameters. 
Locally optimum observational plans for a light and heavy 
pollutants are constructed analytically and numerically using 
the above described procedure of sequential designing.9,10 
Effective numerical algorithms for the determination of 
parameters of the regression function are developed. 

Results of the reconstruction of density of aerosol 
sedimentation on vegetation using plans close to the optimum 
ones are presented in Fig. 3. 

 

 
 

FIG. 3. Reconstructed sediment density of polydisperse 
aerosol on wheat: * and + correspond to data of density 
measurements and * – to measured density at points of 
sampling corresponding to the points of plan. 
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2. CONTROL OF AEROSOL SOURCES IN THE 
GROUND ATMOSPHERIC LAYER 

 
Density of sedimentation, the amount of aerosol, 

summary function of potential losses and the cost for 
spraying, and so on can be used as criteria of effectiveness 
of aerosol spraying depending on the objectives pursued. In 
this case there appears a broad spectrum of the 
mathematical formulation of optimization problems. 

 
A. The standard problem of aerosol technology 

 
The usual aim of treatment of agricultural crops is the 

reduction of the aerosol amount per unit area. This is 
justified both by high cost of aerosols and requirements to 
the cleanness of the environment. However, the reduction of 
the amount of aerosol must not influence the effectiveness 
of its action. So, the optimization problem that arises can be 
formulated in the following way: 
 

Q → min
d

 , (8) 
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where Q is the amount of aerosol used, B is the dose of 
aerosol taken by a pest during the treatment, LD is the lethal 
dose, m is the insect mass, l is the field depth, (z

1
, z

n
) is the 

vegetation layer, q is the concentration of aerosol, and q
MPC

 is 

the maximum permissible concentration. 
Table I gives the numerical solution of the standard 

problem of aerosol technology.11 This solution qualitatively 
agrees with knowledge of the behavior of the optimal 
parameters of the aerosol treatment. 
 
TABLE I. Distribution of optimal amounts and diameters 
of aerosol particles for R = 5. 
 

l, Q
i
/d

i 
, g/m/μm, i = 1, 5  

Φ,  
m 1 2 3 4 5 g/m 

500 23.6/20 5.3/21 5.9/22 5.7/24 5.7/30 46.3 
1000 35.4/17 13.1/18 12.2/19 12.1/20 12.1/22 85.0 
2000 60.1/16 32.7/16 30.4/16 28.3/17 28.2/18 179.8 

 
B. The wave method 

 
A possibility of additional reducing the amount of 

aerosol need for treating agricultural areas by using a more 
rational location scheme of aerosol sources. This is achieved 
by means of the optimum distributions of sources both with 
height and in the horizontal direction. 

Table II gives the results of the use of the wave 
method when the aerosol generator moves across the wind 
direction. This method makes it possible to reduce 
additionally the amount of aerosol by more than half for 
some variants of spraying.12 
 
TABLE II. Distribution of optimal amounts in treating by 
aerosol particles of equal diameter, R = 5. 
 

l, α,  
Q

i 
, g/m, i = 1, 5   

Φ,  
m μm 1 2 3 4 5 g/m 

500 21 22.5 5.8 6.6 6.5 6.4 47.8 
1000 18 33.3 14.0 13.5 13.0 12.8 86.6 
2000 16 61.1 32.7 30.5 29.4 28.8 181.5 

In solving the problem on the optimum source location 
with height, fitting the size of aerosol particles and the 
amount of aerosol at each level, it is possible to obtain the 
distribution of the sediment density that is close to the 
required one.13 

 
C. Optimization of aerosol treatment in the presence  

of forest belt 
 
Forest belt, forest parcels, and bushes are the most 

interesting objects in aerosol sprayings. The mathematical 
model suggested in Ref. 14 was used for the description of 
the interaction of air flow with these obstacles. 

A standard problem of aerosol spraying taking into 
account the presence of forest belt is considered in Ref. 15. 
The solution of this problem is represented in Fig. 4. 
Analysis of results shows that the dose of aerosol changes 
sharply behind the forest belt. 
In conclusion it should be noted that there is a definite 
similarity between the mathematical formulation of optimum 
control and inverse problems. However, there are the 
fundamental differences also. As a rule, uniqueness of the 
solution is necessary for inverse problems. The problems of 
optimum control require the complete description of 
conditions and restrictions in order to select the required 
solution from the set of permissible ones. 

 

 
 

FIG. 4. Isolines of integral concentration of aerosol particles 
2 μm in diameter in the presence of forest belt 10 m in 
height at c

d 
s = 0.1 m–1 (c

d
 is radiodynamic resistance 

coefficient, s is specific surface of vegetation elements). 
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