A.A. Medvedev

Vol. 15, No. 8 /August 2002/ Atmos. Oceanic Opt. 663

Numerical study of aerosol particle sampling from
a low-speed flow

A.A. Medvedev

Research & Development Center of Aerobiology,
State Scientific Center of Virology and Biotechnology “Vektor,” Koltsovo, Novosibirsk Region

Received March 11, 2002

Sampling of aerosol particles in a thin-walled tube opposite in direction to an external air flow is
studied numerically using a solution of the Navier—Stokes equation, integration of equation of particle
motion, and calculation of aspiration efficiency. Of primary concern is the case when the speed of a free
air flow is much lower than the mean sampling velocity. It is shown that, when the velocity ratio tends
to zero, the aspiration efficiency is determined by particle deposition on the tube walls and depends only
on the Stokes number. Based on the calculation results, a semiempirical formula is derived for the
aspiration efficiency as a function of the Stokes number and velocity ratio. The results of the calculations
and the derived semiempirical formula can be used to choose the regimes of aerosol sampling from

ambient air.
Introduction

Aerosol study most frequently begins with
pumping of air containing the aerosol particles into
some measuring device with the use of some sampler.
The simplest and most frequently used sampler is a
thin-walled cylindrical tube. During sampling from the
near-ground atmospheric layer, the wind speed
constantly changes, often resulting in a situation when
the speed of the external flow is much lower than the
air speed at the tube nozzle. In addition, the flow
pumped into the mnozzle is accelerated while the
direction of particle motion is deflected from air flow
lines. As a consequence, the aerosol disperse
composition can be distorted, and a measure of the
distortion serves the aspiration efficiency A = ¢ /¢y,
where ¢ and ¢y are flux concentrations of a given
aerosol fraction inside the tube and in the external
flow, respectively. To minimize the aspiration
distortions, the tube is oriented in the direction
opposite to the velocity vector of the external flow.

To estimate the efficiency of aspiration into the
counter-flow tube, of common use is the semiempirical
formula of Belyaev and Levin,12 inferred from
experimental data:

A=t+R-D[1—— L | (1
1+(2+0‘—62j Stk
R

where R =W /V, is the velocity ratio; W is the
external flow velocity; V) is the mean air speed in the
tube; Stk = tW /D is the Stokes number, D is the tube
inner diameter, and 1 is the time of particle relaxation.
The authors of Refs. 1 and 2 have photographed the
trajectories of individual particles and determined the
diameter @ of the tube of limiting trajectories in an
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unperturbed flow. By the limiting trajectories are meant
the ones establishing a line of demarcation between the
particles entered into the tube nozzle and those past by
the nozzle. The efficiency of aspiration was then
determined from the relation

A=—R, )

obtained for the condition of conservation of the
particle flow inside the tube of limiting trajectories.

Formula (1) describes approximately the data
obtained for R > 0.17; and in this range, it fits well
the published experimental data and theoretic
calculations. For smaller R values, the published data
are inconsistent.

The results of Refs. 3 and 4, also obtained with the
method of limiting trajectories, well agree with Eq. (1)
up to R =0.03, however, substantially diverging from
experimental data.>6 It can be easily seen that, as R
tends to zero for a constant Stk value, for example,
during increasing rate of aspiration to the nozzle, the
efficiency of aspiration tends to zero according to
Eq. (1). At the same time, the experimental data56
demonstrate a qualitatively different, nonmonotone
behavior of the aspiration efficiency, which decreases
with decreasing R, reaches its minimum, and then again
increases. In Refs. 3 and 4 this discrepancy is explained
by the fact that the particles bounced off the tube’s
outer surface could be then pumped into the tube thus
increasing the aspiration efficiency, measured in Refs. 5
and 6 by comparing the particle concentration at the
tube nozzle and independently measured concentration in
the flow. At the same time, data of Refs. 1-4 are
unaffected by the secondary aspiration because the
limiting particle trajectories were recorded visually.

In a number of papers, the aspiration of particles
to a tube was studied theoretically. In Ref. 7, a model

© 2002 Institute of Atmospheric Optics



664 Atmos. Oceanic Opt. /August 2002,/ Vol. 15, No. 8

of point sink is used to calculate the air velocity field;
it is shown that, as the external flow’s rate decreases,
the efficiency of aspiration tends to unity. It should be
noted that in the model used there, the influence of
tube walls was not taken into consideration. In Refs. 8
and 9, the air velocity field nearby the tube was
calculated by solving the Navier—Stokes equations.
Then, integration of equations of particle motion in the
obtained air velocity field was used to determine the
limiting particle trajectories and aspiration efficiency.
The results of Refs. 8 and 9 well agree with Eq. (1) for
R > 0.2; at the same time, the results of Ref. 9 show a
certain disagreement at R = 0.1. It should be noted that
the lower limit of the studied range of R was taken to
be 0.2 in Ref. 8 and 0.1 in Ref. 9.

The question how the aspiration efficiency behaves
at small velocity ratios is practically important for
correct choice of sampler operation conditions and
analysis of obtained results. The efficiency of aspiration
is affected by many factors; they include inertia,
particle impaction on the tube wall, gravitational
sedimentation, and loss of particles inside the tube. The
gravitational forces can be neglected, provided the
external flow rate is much larger than the particle
sedimentation rate. The particle impaction contributes a
significant uncertainty since it depends on interaction
of particles with tube walls. To estimate the range of
this uncertainty, some other factors should be correctly
taken into account. At the same time, data on influence
of the particle inertia on the behavior of the aspiration
efficiency at R < 0.2 are insufficient. The purpose of
this work is a numerical study of the efficiency of
aspiration to the tube nozzle at small values of the
velocity ratio, taking into account only the effects of
particle inertia.

1. Method

The procedure of finding the aspiration efficiency
included the following steps. First, the field of
velocities of an air flow free of particles was calculated;
and then, the particle trajectories were determined.

The flow velocity field was calculated by solving
the Navier—Stokes equations for stationary axially
symmetric current of the viscous incompressible air in
the cylindrical coordinate system:
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closed using the continuity equation
v, v, oo,
— =0, (5)
o r 0z

where o, and v, are air velocity components; P is the
pressure; p and p are the air density and viscosity.

Equations (3)-(5) were rewritten in terms of
variables “vortex —current function”:
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The intensity of the vortex (w/7) and the
function of current ¥ were defined as:

w 1 602 avr)
r_r(ariéz ’ ®
1 0¥ 1 0¥
T T e Ty ez )
where
602 avr r Z/
v, = Vo 0, = Vo =D 2] (10)

are the velocity and coordinates, made dimensionless
with the use of mean air velocity V{ in the tube and
the tube inner diameter D as the scales; Re = pVyD /p
is the Reynolds number.

Equations (6) and (7) were transformed into
finite-difference form and solved using the iteration
technique as given in Ref. 10.

The calculation region shown in Fig. 1 represents
a cylinder whose axis coincides with the tube axis of
symmetry. The air flow enters the region through the
end surface ab of the cylinder, and leaves it through
the inner cross-section di and outer cross-section gc. It
is assumed that at the input ab and lateral bc¢
boundaries of the calculation region the flow is
unperturbed and the flow rate is equal to the external
flow rate.

At the tube wall surface and axis of symmetry, the
function of current is constant. Since the function of
current is defined as accurate to an additive constant
factor, at the tube surface it was assumed to be zero.
Its values for the boundaries ab, ad, and bc were
precalculated by integrating (9) and (10) for air
velocity profiles set above:

W,y = 0125, W, (r) =0.125 - R¥* /2,
¥, =0.125 - RS? /2,

where S is the radius of the calculation region. The
intensity of the vortex at the boundaries ab and bc was
equal to zero. These values do not change during the
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iteration procedure, in contrast to the intensity of
vortex at the tube wall surface and at the symmetry
axis calculated at each iteration step by the finite-
difference formulae. At the exit boundaries gc and dh
of the region, the velocity distribution was unknown. It
was only assumed that the radial component of air
velocity at the boundaries was zero, i.e., the lines of
current were parallel to the tube axis. Thus, at each
iteration step, the function of current and vortex at the
exit boundaries were set equal to the corresponding
values at the upstream grid points.

: —
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Fig. 1. Calculation region for air flow field near tube.

After the function of current is calculated at each
finite-difference grid point, the velocity can be
determined using relations (9) and (10). The equations
of particle motion are written in accordance with the
Stokes law:

d? d

Stkd—t§=o,—d—:, (11)
d? d

Stkd—tj:vz—d—i. (12)

The particle trajectories were calculated by
integrating the equations of particle motion using the
Runge—Kutta method of the fourth order. Initial points
of the trajectories were located at the boundary ab. The
initial particle velocity was equal to the external flow
velocity W.

As in many papers on aspiration (see, e.g.,
Ref. 1), we considered the efficiency of aspiration as a
function of dimensionless similarity parameters,
namely, the Stokes number and velocity ratio. The
calculations were made at a fixed number Re = 1000.
Precalculations, as well as data of Ref. 8, show that the
efficiency of aspiration weakly depends on the Reynolds
number in the range 500 < Re < 10000.

Figure 2 shows the limiting line of the air current
pumped into the tube (solid line) and particle
trajectories (dashed lines) calculated at R = 0.02 and
Stk = 2. Particles having touched the tube wall were
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excluded from the sample. Particles passing the cross-
section of the tube nozzle were assumed as sampled. The
limiting trajectories were determined by the bisection
method. The efficiency of aspiration was calculated by
formula (2).
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Fig. 2.

In the calculations, the sizes of calculation domain
and the number of grid points were chosen so that their
further increase did not influence the calculated
aspiration efficiency. The length of the calculation
domain was equal to twenty tube diameters in the flow
direction and ten tube diameters downward the tube
nozzle (Hy =20, Hy =10). The tube wall’s thickness
was equal to minimal grid step because its influence on
the aspiration efficiency was not a subject of this work.
The radius of calculation domain (S = 16) was taken
sufficiently large for the air flow pumped into the tube
was less than 5% of the total flow entering the region.
The number of grid points was 91 in the radial
direction and 109 in the direction of the tube axis. To
gain a better approximation, the finite-difference grid had
nonuniform grid spacing, denser near tube wall and
nozzle, where the velocity and pressure gradients are
maximal.

2. Results

After completion of preliminary studies, we
performed a series of calculations in which the
efficiency of aspiration was determined as a function of
velocity ratio R =0.02—0.9 and the Stokes number
Stk = 0.01-2. The lower limit of the velocity ratio
range was chosen so that the influence of gravitational
sedimentation could be neglected for typical aspiration
rates and particle sizes. For instance, at V=10 m/s
and R =0.02, the external flow rate is W =10.2m/s,
that is far in excess of sedimentation rate of particles with
diameter of 10 um (0.003 m/s). The results of
calculations shown by dots in Fig.3 well agree with
semiempirical equation (1) at W,/Vy> 0.2, except the
W,/Vy<0.2 case, when a significant disagreement is
observed.

The aspiration losses can be considered as a result
of particle sedimentation on an imaginary ring of &
thickness outside the tube (see Fig. 2). The ring’s
internal diameter equals to the tube diameter, while its
external diameter coincides with the diameter of the
cylinder of limiting air flow lines in an unperturbed
flow. The general expression for aspiration efficiency is?

A=1+a(R-1), (13)
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where o is a dimensionless parameter, which can be
interpreted as the efficiency of sedimentation on the
ring.

Reference 11 suggests the following expression for
efficiency of particle sedimentation on bodies of
different shapes:

1

a=1
where k is dimensionless parameter dependent on the
obstacle shape; St is the modified Stokes number
defined here as the ratio of the distance tW, at which
the particle is coming to a halt, to the obstacle
width 8.

Using the diameter of the limiting surface of the
air flow, determined from relation (2), and assuming
that the efficiency of aspiration A =1, we obtain the
following expression for the ring width:

1 -+R
=D 2\/73 (15)

and for the modified Stokes number

\/_

R
St W 2S5tk ———. (16)
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Combination of Egs. (13), (14), and (16) yields
\/1—3 _

A=1 +|:1 —(1 + 2k Stkﬁ)
By fitting Eq. (17) to calculated values of the

aspiration efficiency, we obtained the following relation
for the coefficient k:

1 1 -~R
k—5+2(wj. (18)

Use of Eq.(18) in Eq. (17) gives the
semiempirical equation for the aspiration efficiency

[ ( ] )1}
A=1+|1-|1+ Stk———= + 4Stk (R-1). (19)
1—le

In Fig. 3, solid lines show the dependences of the
aspiration efficiency on R, calculated for several Stk
values from Eq. (19); dots show values of the
aspiration efficiency determined numerically, and the
dashed lines are calculated from Eq. (1). As is seen,
Eq. (19) well fits the numerical values obtained for
Stk > 0.2, and satisfactorily fits them for smaller values
of the Stokes number.

From the obtained results we can conclude the
following. For a constant Stokes number, i.e., for a
constant wind velocity, the efficiency of aspiration
decreases with increasing aspiration rate; and as R — 0,
it tends to a constant value, determined by the rate of
particle deposition on the tube wall and the Stokes
number:

1
:|(R— 1). (17)

1

A =T Stk

(20)
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Fig. 3. Efficiency of aspiration as a function of velocity ratio
R and the Stokes number.

Model of point sink? takes into account only
capture of particles by velocity field of the pumped air.
For the tube, the efficiency of aspiration can be
represented as a difference between efficiency of
aspiration to the point sink and efficiency of particle
deposition on the tube wall. It should be noted that
Eq. (20) can readily be derived from Egs. (13) and
(14) by taking into account parameter k =4, as
obtained in Ref. 11 for particle deposition on the
surface of the cylinder. From Eq. (20) it follows that
A>0.9 at Stk <0.1. This result can be wused as a
criterion of undistorted sampling.
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