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An algorithm, for estimating the optical and geometrical parameters of plant canopies 
using bidirectional reflectance measurements of scattered solar radiation is described. 
The algorithm is based on the well-known Newton method. Formulas for calculating the 
derivatives of the spectral density coefficient with respect to the retrieval parameters by 
the Monte Carlo method and some results of model calculations for solving the inverse 
problem are given. 

 
 

1. INTRODUCTION 
 

In the last few years the rapid development of 
remote sensing of vegetation has made it necessary to 
develop algorithms for solving the inverse problems of 
determining the optical and geometrical parameters of 
plant canopies (PC) from data on the spectral 
brightness of the system "soil—vegetation". The 
development of plant canopy reflection models plays a 
key role in the solution of these problems. A complete 
review of existing models is contained in Refs. 1 and 
2. Two fundamentally different approaches to the 
description of the PC radiation regime can be found: 

1) modeling the vegetation by geometric figures 
with given dimensions and reflectance, 

2) modeling the radiation transfer in a dense 
turbid medium filled with "leaves" of infinitessimally 
small dimensions with given distributions of their 
normal vectors and their optical properties. 

While the first model is especially well-suited for 
the description of nonuniform thin crops, the second 
model, on the contrary, is used for a thick nonuniform 
PC in which the sizes of the phytoelements are smaller 
than the height of the PC.3 Tere are also mixed models 
which account for the sizes of the lamella within the 
context of a turbid lamellar medium.4,5 One of these 
models was used in Ref. 6 to solve the problem by the 
Monte Carlo method. 

The first efforts at inverting reflection models for 
vegetation were performed by Goel et al. (see Ref. 1 
and the references cited therein). They succeeded in 
solving the inverse problems for different models of 
uniform and nonuniform PC. The method for solving 
these problems consisted of minimizing a certain 
quadratic functional. In Ref. 7 the optical parameters of 
crops, a model of which is described in Ref. 10, were 
retrieved using a technique for solving inverse problems 
which makes use of the Monte Carlo method.8 

The reflection model of Nilson-Kuusk was in-
verted by the same authors in Ref. 4. The retrieval 
technique was of such a kind that the retrieved pa-
rameters could not enter the "unphysical" region. The 
inversion procedure was used simultaneously for two 
sets of optical parameters in different spectral regions 
and one set of geometrical parameters.4 

The aim of this paper is to invert the reflection 
model of Ref. 6 by using the Monte Carlo method. In 
this model the process of radiation transfer in the plant 
canopy is described by the integral transfer equation in 
a turbid lamellar medium whose elements have fixed 
dimensions. This equation is solved by the Monte 
Carlo method. 
 

2. NOTATION AND STATEMENT OF THE 
PROBLEM 

 

We will use the notation of Refs. 5 and 6. 
x = (t, ) is a point of the phase space x; t = t(z) is 
the total leaf surface index at height z;  is the direction 
of motion of the photons immediately prior to the col-
lision; 0 = (0, 0), 0 < 0, and * * *

0 0 0( , ),     
*
0 0   are the direction vectors of the solar radiation 

and observation, respectively; L = (L, L) is a ran-
dom leaf surface normal vector. The optical distance 
from the point z to the upper boundary of the layer in the 
direction  is r(x) = t(z)G(), where 
 

 
 

is the average projection of the leaf normals onto the 
direction . This quantity is equal to the extinction 
coefficient along the direction  not taking into account 
the sizes of the leaves. Here gL(L) is the density of the 
leaf normal distribution 
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g(L) is the density of the distribution of the polar 
angles L of the leaf normals10: 
 

 
 
Here the parameters b and c determine the distribution 
of the leaf tilt angles. The parameter4–6 

 

 
 

where 
 

 
 

 
 
and ê is a new extinction coefficient, which accounts for 
the effect of glint and the relative size of the lamellas. 
Íåãå H = t(T) is the leaf surface index of a layer with 
height T. The conditional probability of scattering in the 
direction  from the direction  is equal to 
 

 
 
where 
 

 
 
is the reflection-transmission phase function of the 
Lambertian surface of a leaf with diffuse reflection 
coefficient rL and transmission coefficient tL. Denoting 
the albedo of the underlying surface by rs, we obtain a 
set of seven parameters b, ñ, ê, H, rL, tL, and rs to be 
retrieved. 

Statement of the inverse problem: a monodirec-
tional flux of solar radiation falls on the outer surface 
of a planar layer of plants. Detectors which measure 
the spectral brightness coefficient (SBC) of the 
vegetation from which the three optical parameters of 
the layer (rL, tL, and rs) and the four geometrical 
parameters (b, ñ, ê, and H) are to be determined are 
located on the upper boundary of the layer. The 
geometrical parameters are more important because 
they are difficult to measure. 

We assume that 1) the detector is located not high 
above the upper boundary of the layer and 2) the 
optical density of the atmosphere is negligibly small in 
comparison with the optical density of the vegetation 
layer. Hence, atmospheric scattering of light inside the 
vegetation layer and along the trajectory from the 
upper boundary of the layer to the radiation detector 

can be neglected. To account for the effect of the 
atmosphere on the downwelling solar radiation flux, 
the diffuse component should be added to the mono-
directional flux. This has no effect on the solution 
algorithm of the problem, hence this effect was not 
taken into account in the first numerical experiments 
with the model problem. 
 

3. SOLUTION ALGORITHM 
 

The retrieval parameters are included in the 
transfer equation for the intensity in a complicated 
way, hence it is difficult (or even impossible) to form 
a closed analytical equation for them. In addition, 
these attempts should lead to different equations for 
different parameters. The use of a universal algorithm 
is preferable. We choose a modification of the Newton 
method.12 Let * *

1, ... , n   be the unknown values of the 

parameters 1,  ,n, which are to be retrieved. Let 
Rk  Rk(1, , n), k = 1, , N > n, be the SBC’s 
along the direction of sighting * for vegetation with 
the parameters 1,  ,n, respectively. Let 

* * *
1( , ..., )nk kR R    be the measured SBC’s. To de-

termine * *
1, ... , n   we consider the system of nonlinear 

equations 
 

 (1) 
 
where Rk are quite complicated functions. Solution of 
this system by the Newton—Kantorovich method11 
leads to the iterations 
 

 (2) 
 

where 1
1  satisfy the system of linear equations 

 

 
 

 (3) 
 

The prognostic values 0 0
1, ..., n   are taken as the 

initial approximation of the retrieval parameters. 
Procedure (2) is repeated until the inequality 
 

 
 
is satisfied, where  is some given small number. System 
(3), generally speaking, is overdetermined. It can be 
solved by the method of least squares. If the system is 
ill-defined, regularization may  be used.12 The values of 
the SBC s and their derivatives are computed by the 
Monte Carlo method(see Eqs. (4) and(5)). 

Sometimes it is convenient to employ a modifi-
cation of the above scheme. Let us represent the value 
of R as the sum R = R1 + (R – R1), where R1 is the 
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SBC of the singly scattered photons. Often in the 
important cases (e.g., in the spectral range of pho-
tosynthetically active radiation) the role of singly 
scattered radiation in the total flux is great. It can be 
readily verified that this assumption is also valid for 
the corresponding derivatives. Hence, it is natural to 
attempt to substitute the derivatives dR1/d for the 
derivatives dR/d in system (3). The advantage of 
this substitution is a direct consequence of the algo-
rithm used for calculating the derivatives (Section 5), 
namely, the derivatives dR1/d are calculated faster 
and more accurately than the derivatives dR/d. Of 
course, the theoretical rate of convergence in this case 
is slightly lower. However, in practice this may be 
compensated by the greater accuracy of the calculation 
derivatives dR1/d. ln addition, the relative differ-
ence of the derivatives dR/d and dR1/d is not large 
for small values of the leaf surface index. 
 

4. CALCULATION OF SBC BY THE MONTE 
CARLO METHOD 

 
Let J(t, ) be the value of intensity of the 

scattered radiation at the point (t, ). The function J 
satisfies the integral equation6 
 

 
 

 (4) 
 
where 
 

(5) 
 
I0 is the radiation intensity incident along the direc-
tion 0, and the kernel k(x – x) (x = (t, ) is a 
point in the phase space X) is equal to 
 

 
 

 (6) 
 

The SBC along the direction of sighting can be found 
by solving Eq. (4): 
 

 (7) 
 

Equation (4) is solved by the Monte Carlo method.6,8 
Let us write it in the operator form J = KJ + F. It is 
known that when 1K   the solution of Eq. (4) can 
be represented by a Neumann series11 
 

 
 

Let the scalar product in the space X be of the 

form 
 

 
 

Then 
 

 
 

 
 

 (8) 
 

Here x* = (0, *), *
x  is the delta-function, and K* 

is the operator conjugate to K 
 

 (9) 
 

 
 

 (10) 
 

From Eqs. (5), (7), (8), and (9) it follows that 
 

(11) 
 

where Q is the initial collision density 
 

 
 

 (12) 
 

Expression (11) corresponds to the following 
algorithm based on the Monte Carlo method. The 
Markov chain 0 1 ... –n n n

mx x x   with transition den-

sity k is numerically simulated, where m is the random 
number of the last collision for the nth trajectory. 
After the collision at the point 1

nx  the value 1 1( )n nW x  

is added to the estimate R, and correspondingly for the 
other collisions, so that finally we have 
 

 (13) 
 

where N is the number of trajectories and n
iW  is the 

weight of the nth photon after the ith collision. 
For the reflection from the soil the contribution 

function is equal to 
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where rs is the SBC of the soil, and * /   is the 
angular density of scattering from the underlying 
Lambertian surface. 
 

5. CALCULATION OF SBC DERIVATIVES  
BY THE MONTE CARLO METHOD 

 
Let us write the Neumann' series (11) in compact 

form 
 

(14) 
 

Here Q0 = Q(x0), 0 = (x0), k12 = k(x1 – x2). To 
calculate the derivative R/ we differentiate the 
series (14), denoting f/ as f: 
 

 
 

 
 

 
 

 
 

The latter representation corresponds to the 
following calculation algorithm. We model the 
Markov chains as before, and after each collision at the 
point x the contribution (x)W is added to the es-
timate of R/. Thus, the derivatives are calculated 
from the same trajectories as the SBC’s. A rigorous 
grounding of the calculation algorithm is given in 
Ref. 8. It is evident that the calculational require-
ments of the derivative calculation in comparison with 
those of the SBC’s is determined by the computational 
requirements of the calculation of the factor W0…i. 

As has already been mentioned, the accurate 
calculation of all the values W0…i demands a consid-
erable expense of computer time. Sometimes one can 
simplify the problem and calculate the derivative only 
from the first  term in Eq. (11). Let 1 0 0.R Q   

Then it is sufficient to calculate the factor 

0 0 0 0 0/ /W Q Q      to estimate the derivative 

R1/. 
Let us write an expression for R1. There are two 

types of collisions — on the leaf surfaces and on the 
soil surface 
 

 (15) 
 

where R1L is the SBC of radiation singly scattered 
from the leaves and R1s is the corresponding value for 
the soil. From Eqs. (10)–(12) we obtain 
 

 
 

 (16) 
 

 
 

 (17) 
 

Now let us consider statistical estimates of R/ 
for specific values of the parameters . 

a) The albedo of the underlying surface, rs. It is 
evident that only R1s depends on rs, hence W0 = 1/rs 
and 
 

 
 

 
 

b) The reflection and transmission coefficients of 
the leaves, rL and tL. Only the reflection phase 
function f of the leaves, which enters into the formula 
for P( — *), depends on these parameters. Hence, 
 

 
 

 
 

 
 

c) The parameters b and c, which characterize 
the density of the distribution of the orientations of 
the leaf normals. Both of the functions  and Q depend 
on these parameters 
 

 
 

 
 

Finally, substituting one of the parameters b or c 
for a yields 
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where the integral in the second term is calculated 
analytically. 

d) The parameter H – the leaf surface index of 
the SBC. From Eq. (15) it is clear that the upper limit 
of the integration as well as the quantity K depends 
on H. Differentiating R1L with respect to the pa-
rameter H, we obtain the analytical expression 
 

 
 

 
 

 
 

 
 

Thus, the derivative of R1L with respect to H is 
equal to the sum of two terms. The first of these is a 
fixed analytical expression, and the second is the 
mathematical expectation of the statistical estimate of 
R1L, multiplied by the weight factor 
 

 
 

Analogously, 
 

 
 

 
 

e) The parameter ê, which characterizes the leaf 
sizes. Only the contribution function  depends on it 
 

 
 

6. CALCULATIONAL RESULTS 
 

Here we give results of some model calculations 
for retrieving the parameters of the vegetation layer. 
The general scheme of the calculation is as follows: 
first we calculate the SBC of the transmitted and 
reflected radiation along different directions for some 
model medium. Second, the calculated values of the 

SBC’s are used to successively retrieve the model pa-
rameters. The choice of variants of the geometry of 
observation depends on the parameters being retrieved. 
The location of the detector and the direction of ob-
servation are chosen such that 1) the fraction of singly 
scattered radiation should be as high as possible, and 
2) the retrieval parameter (or parameters) can be re-
stored from the values of the singly scattered radiation. 

In the calculations the solar zenith angle   was 
40°, and the azimuthal angle of observation (excluding 
the variant for retrieving the phase function pa-
rameters b and c)  was equal to 0°. The parameters of 
the detector (the height z and the zenith angle of 
observation ) are given below: 

1) H: z = 0;  = 50, the transmitted radiation is 
being observed, the angle  is close to [ (  [, to 
eliminate direct radiation from the Sun on the detector). 

2) ê: z = T;  = 210, the reflected radiation is 
being observed (it is "more sensitive" to values of ê 
than is the transmitted radiation), the angle  is close 
to [ + 180 (when  = [ + 180, the singly scat-
tered radiation is independent of ê, see the formula for 
ê (Eq. (2)). 

3) rs: z = T;  = 180. 
4) rL, tL: two detectors; z1 = z2 = T; 1 = 230, 

1 = 0; 2 = 230, 2 = 90. There were some at-
tempts to use different directions of observations, 
however, without positive results. 

The standard scheme or a modified scheme is used 
depending on the selected variant. For fair restoration, 
the number of iterations is chosen in such a way that it 
becomes possible to obtain two significant figures in 
the retrieval parameter. 

To start with, we considered a vegetation layer 
with leaf surface index H = 4. The retrieval pa-
rameters of the model and the results of their resto-
ration are given in Table I. The retrieval parameters 
are given in the first row, the initial approximations of 
these parameters are given in the second row; the 
number of iterations of the modified scheme needed for 
retrieval of the parameter with the accuracy given 
below are given in the third row; the numbers of 
iterations of the standard scheme are given in the 
fourth row; and the relative error of restoration in 
percents are given in the fifth row. It was possible to 
retrieve the parameter ê rapidly using the modified 
scheme, hence the standard scheme was not used here; 
retrieval of the parameters b and c by the standard 
scheme failed; therefore the table gives only the 
numbers of the iterations for the modified scheme. 
 

TABLE I 
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An analogous calculation for retrieval of the 
parameters b and c is performed for H = 2. We suc-
ceeded in retrieving these parameters with an error of 
approximately 10% using five iterations. 

Thus, as was expected, the above problem is 
solved more easily with smaller values of the index H. 
For large values of H, the proposed algorithms do not 
allow one to retrieve the parameters b and c accurately 
and quickly. In connection with this, attempts are 
being undertaken to develop a more effective modi-
fication of the described algorithm. 
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