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A method is proposed for a solution of the inverse problem of determining the 

position, number, strength, and type of pollution sources based on the use of an 
equation adjoint of the semiempirical equation of turbulent diffusion. Stationary 
point pulsed and continual sources are considered. The results of qualitative 
analysis of a model of the spread of pollutant are presented.  

 
A problem of identification of the parameters and 

number of sources of the atmospheric aerosol pollution 
from measurements of the pollutant concentration is of 
interest for solving many scientific and practical 
problems, in particular, when considering a problem of 
ecological monitoring. In a number of papers (see, for 
example, Refs. 1 and 2) the problem of determining the 
position and strength of a single continual source was 
studied. At the same time, a variety of the processes of 
polluting is not exhausted by this case only. A problem of 
pollution identification is considered in this paper in the 
lack of a priori information about position, type, number, 
and strength of sources, what is a typical situation when 
estimating the degree of anthropogenic impact onto the 
protected environment.  

Let us introduce into consideration a certain 
spatiotemporal domain Ω×Ωt and denote the distribution 

function of the pollutant concentration by ϕ(x, t) and the 
function describing sources by f(x, t), where x ∈ 2Ω and 
t ∈ Ωt . We introduce the Cartesian coordinate system in 

Ω. Denoting an operator describing the spread of 
pollutant by L, we write down a basic model in the form  
 
Lϕ = f , (1) 
 
where 

L = 
∂

∂ t + u grad – div μ grad – 
∂

∂ z ν 
∂

∂ z . (2) 

 
Initial and boundary conditions are formulated as follows:  
 
ϕ = 0 at t = 0 ,  ϕ = 0 on Ψ for un < 0 ,   

 
∂ϕ
∂ n = 0 on Ψ for un ≥ 0 , 

 
∂ϕ
∂ z = α ϕ + M on Ψ0 ,  

 
∂ϕ
∂ z = 0 on ΨH , w = 0 at z = 0 and z = H , 

 
where u = (u, v, w) and u, v, and w are the velocity 
components along the x, y, and z axes, respectively; Ψ, 
Ψ0, and ΨH are the boundaries of Ω; α is the coefficient 

of entrainment of the pollutant with a surface; μ and ν  

are the horizontal and vertical diffusion coefficients; and, 
M is the surface source of the pollutant.  

Processes of sedimentation and self–induced ascent 
are taken into account in the vertical component of wind 
velocity w (as in Ref. 3). For definiteness, we assume 
that the pollutant is monodisperse and inert. Now we 
consider practically significant cases of a stationary point 
or pulsed source of pollutant in Ω. We use δ–function for 
the formal description of a single point source.4 Then we 
have for the pulsed source  
 
f(x, t) = Q δ(x – xξ) δ(t – tξ) , (3) 
 
and for the continuous one  
 
f(x, t) = Q(t) δ(x – xξ) . (4) 
 
In Eqs. (3) and (4) Q is the strength of emission, xξ is 
the source coordinate, and tξ is the source lifetime. Let 
the continuous source strength be constant in time, i.e., 
Q = const.  

Now we investigate the salient features of the pollutant 
field evolution in Ω for different source types corresponding to 
the right–hand side of Eq. (1) in the form of Eq. (3) or (4). It 
should be noted that Eq. (1) describes a system with 
distributed parameters, i.e., its phase pattern has an infinite 
dimensionality. The phase patterns shown in Fig. 1 were 
obtained following the approach outlined in Ref. 5. For 
continuous source (Fig. 1 a), heterocline trajectory is 
observed, and the corresponding solution has the form of a 
travelling wave of front type. For a single pulsed source 
(Fig. 1 b), homocline trajectory and solution of a pulse type 
were obtained. The presence of several continual sources does 
not change the system behavior qualitatively. However, it 
should be noted that for several pulsed sources, periodic 
trajectory originating from the homocline loop is observed 
(Fig. 1 c). So, taking into account that the singular points A 
and B correspond to the stationary solution of Eq. (1), it may 
be concluded that:  

– analysis of the dynamics of change in ∂ϕ/∂t can 
provide a basis for determination of the source type;  

– it is desirable to identify continuous sources after 
termination of a transient period, i.e., after setting up of 
a stationary regime;  

– uncertainty in the number of pulsed sources, 
unlike continuous ones, can be eliminated by an analysis 
of the field ϕ on the number of maxima (the point c).  
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FIG. 1. Trajectories for equation (1) for single continuous 
source (a), single pulsed source (b), and several pulsed 
sources (c) of pollutant.  

 
To solve the inverse problem, we use the adjoint model  

 
L* ϕ* = f* (5) 
 
with the initial and boundary conditions:  
 
ϕ* = 0 at t = T , ϕ* = 0 on Ψ for un < 0 , 

 

μ 
∂ ϕ*
∂ n  + un ϕ* = 0 on Ψ for un ≥ 0 ,  

 
∂ ϕ*
∂ z  = α ϕ + M on Ψ0 , 

 
∂ ϕ*
∂ z  = 0 on ΨH ,  w = 0 for z = 0 and z = H . 

 
The operator L* adjoint of the operator L of basic 
problem (1) can be obtained based on the Lagrange 
identity6:  
 
(ϕ*, L ϕ) = (ϕ*, L* ϕ*) (6) 
 
and has the form  
 

L* = – 
∂

∂ t + u grad – div μ grad – 
∂

∂ z ν 
∂

∂ z . (7) 

 
Allowing for Eqs. (1) and (5), Eq. (6) can be reduced to 
the form  
 
(ϕ*, f) = (ϕ, f*) . (8) 
 
Let us denote the Green's functions of the basic and adjoint 
operators by Gξ(x, t) and Gr

*(x, t*), respectively (subscripts 

ξ and r correspond to the source coordinates xξ and the 

position of a point of concentration measurements xr). By 

definition, the functions Gξ(x, t) and Gr
*(x, t*) can be 

obtained by solving Eqs. (2) and (5) with the right–hand 
side in the form of Eq. (3) or (4) for the source of unit 
strength (for Gr

* , xξ is substituted by xr). Then using 

Eq. (8) we obtain  
 
(Gr*(x, t*), δ(x – xξ)) = (Gξ(x, t), δ(x – xr)) . 

 
Hence,  
 

Gr*(xξ, t*) = Gξ(xr, t) (9) 

 
at t* = t. Reciprocity of the Green's functions of the basic 
and adjoint operators provides a basis for solving the 
problem of identification. The requirement t* = t is not too 
burdensome when determining the continuous source 
parameters if the system is in the stationary regime (the 
point B in Fig. 1 a); however, it essentially complicates the 
solution of the problem in the case of pulsed sources.  

Now, using Gξ(x, t) we represent the solution of basic 

model (1) at the point x ∈�Ω for each point source 
described by Eq. (3) or (4) with the coordinates xξ and 
strength Qξ as follows:  
 
ϕ(x, t) = Qξ Gξ(x, t) . (10) 
 
Having written the solution of Eq. (1) in the form of 
Eq. (10) for the point of source xξ and having arbitrarily 

chosen a point with coordinate xr , after some 

transformations we obtain  
 
ϕ(xξ, t) / [Gξ(xr , t)] = Qξ Rξ(xr , t) , (11) 

 
where Rξ = Gξ(xξ, t)/Gξ(xr , t) characterizes a change in 

the solution sensitivity. So, to produce the concentration 
ϕ(xξ, t), the source strength must be increased by Rξ(xr , t) 

as this source moves to the point xr . Allowing for Eq. (9) 

and having generalized Eq. (11) on the whole domain Ω we 
introduce a function of the necessary strength S  
 
Sr(x, t) = ϕ(xr, t) / Gr*(x, t*) , (12) 

 
which is defined as the source strength necessary for 
producing the concentration ϕ at the point xr as a function 

of its coordinates x. In other words, if ϕ(xr , t) is known 

(measured) then Sr(x, t) is the strength of a fictitious 

source placed at the point x, which produces this 
concentration.  

Let us discuss a problem of existence of a solution to 
inverse problem using Eq. (12). For vivid presentation in 
one–dimensional case, we consider the following expression:  
 
Sr1(xa) = Sr2(xb) , (13) 

 
where the correspondence to the measurement points with 
coordinates xr1 and xr2, xa ∈ Ω, xb ∈ Ω is indicated by the 

subscripts r1 and r2, and the symbol t is omitted on the 
assumption that the stationary regime is considered. With 
allowance made for Eqs. (12) and (10), expression (13) has 
the form  
 

Gξ(xr1) / G r1* (xa) = Gξ(xr1) / G r2* (xb) . (14) 

 
It follows from Eq. (9) that at least one point exists with 
the coordinate xa = xb = xξ where Eq. (14) is valid.  

Now proceeding from the qualitative difference 
between mechanisms of the pollutant field formation with 
continuous and pulsed sources, algorithms for solving the 
inverse problem for different source types are considered 
separately. In the case of a single continuous source, the 
solution is reduced to finding the point x (x = xξ) for which  
 
Sr1(x) = Sr2(x) = ... = Srn(x) , (15) 
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where n is the necessary number of points of measuring the 
pollutant concentration corresponding to the number of the 
sought–after parameters. In particular, for the plane case 
with measurement points on the plume axis (i.e., the 
problem is one–dimensional), finding the point satisfying 
Eq. (15) can be reduced to minimization of functional of the 
following form: 
 
arg min (Sr(x) – Sr1(x))2 ,  x ∈ Ω . 

 
A form of necessary functional depends on dimensionality of 
the problem being solved. After determination of the source 
coordinate xξ, the source strength is obtained from 
relation (12).  

In the presence of p continuous sources the 
determination of their parameters in general is reduced to a 
solution of the system of equations  
 
GQ = F . (16) 
 
Elements of the matrix G are gij = G*

ri(xξj), 

Q = [Q1, ... , Qp]
T , F = [ϕr1, ... , ϕrn]

T , i = 1(1)n , 

j = 1(1) p, xξj are the coordinates of the jth source, and ϕrj 

are the measurement in the ith point. Let us denote a 
contribution of the jth source by ϕ j, then after some 
transformations Eq. (16) can be reduced to the following 
form:  
 
G′ Q′ = ϕr1 , (17) 
 

where the elements of the matrices G′ and Q′ are 
represented as 
 

g i j′  = 
⎝
⎛

⎠
⎞Sr1(xξj)

Sri(xξj)
 – 

Sr1(xξp)

Sri(xξp)
,   

 

g i j′  = ϕ r1
j  

⎝
⎛

⎠
⎞1 – 

Sr1(xξp)

Sri(xξp)

–1

, 
i = 2(1) n ,
j = 1(1) p – 1 . 

 

After solving Eq. (17) for xξj and ϕ j
r1, the source strengths 

are derived from Eq. (12) by substitution of ϕ by ϕ j
r1. The 

value of ϕ j
r1 is determined from the principle of solution 

superposition. A certain complication of the elements of the 
matrices Q and G is compensated by reduction of their 
dimensionality and feasibility to identify the source making 
a maximum contribution to the concentration value.  

In the case of identification of pulsed sources, a 
problem arises connected with uncertain time of emission 
(accordingly, time of integration of the adjoint problem). 
By analogy with the case of continual sources, the function 
of necessary strength of the pulsed source S′ is introduced. 
We assume that the pollutant emission of strength Q 
occured at the moment tξ at the point xξ. Starting from a 

certain moment Tr0 (Tr0 = tξ + τ , τ ≥ 0), the coordinates 

xm
rk and maximum values of field ϕ (the point C in Fig. 1 b) 

denoted by ϕm
rk (ϕm

rk = ϕ(xm
rk)) are determined at regular time 

intervals Δt at the moments Trk (k = 0(1) l , 

Trk = Tr0 + kΔt = tξ + τ + kΔt ). Then  

 
S′(t*) = ϕ rk

m  / G rk*
m(t*) ,  t* ∈ [Trk, 0] , (18) 

 
where G*m

rk (t*) is the maximum fundamental solution of 

Eq. (5). Now we consider the identification of a single 

pulsed source. For every moment Trk , the function (18) is 

constructed, then determination of the time of emission tξ is 

reduced to finding the moments t*rk for which  

 
S r0′ (t r0* ) = S r1′ (t r1* ) = ... = S rl′ (t rl*) (19) 

 
with tξ = Trk – t*rk. The source coordinates xξ provide the 

maximum of the function G*
rk upon integrating problem (5) 

over the time Trk – t*rk, and the strength Q can be obtained 

from Eq. (18). The identification of p (p > 1) pulsed sources 
in general is reduced to solving the system of equations (16) 
for a certain moment Trk with the corresponding matrix 

elements of the form  
 
gij = Gξj(x

mi, Trk) ,  Q = [Q1, ..., Qp]
T , 

 

F = [ϕ rk
m1, ..., ϕ rk

mp]T ,  i = 1(1) p ,  j = 1(1) p . 

 
We assume that the measurement intervals Δt are 

regular as before and denote the interval between the 
instant of emission from the jth source and the start of 
measurements of the field ϕ by τj : τj = Trk – tξj. Similarly 

to the case of a single pulsed source, the position xmj
rk and 

value ϕmj
rk of each maximum of the field ϕ at the moment 

Trk (ϕmj
rk = ϕ(xmj

rk, Trk)) are determined. Then the following 

expression is valid for each ith maximum:  
 

ϕ rk
mi = QiG rk*

mi(τi + k Δt) = ∑
j=1

p
 QjG rk*

i(xξj, τi + kΔt) , j ≠ i . (20) 

 
In the right–hand side of Eq. (20), the first term 

determines contribution to the ith maximum of the field ϕ 
from the ith source, the second term determines 
contribution from the other p – 1 sources, j denotes the 
current numbers of all sources except i, and G*i

rk is the 

solution of problem (5) with the right–hand side in the 
form f = δ(x – xmi

rk) δ(t – Trk). If the second term in the 

right–hand side of Eq. (20) is small and can be ignored, the 
identification of p pulsed sources is reduced to the 
application of a procedure of determining the single source 
parameters corresponding to each of p maxima of the field 
ϕ. This situation arises for sources separated in time or 
(and) space and is characterized qualitatively by the phase 
pattern shown in Fig. 1 b (i.e., the mapping point returns to 
the equilibrium state A). Otherwise the system behavior is 
characterized by Fig. 1 c, i.e., by existence of a limit cycle. 
Then the identification of p pulsed sources is reduced to 
solving the system of equations  
 

GQ = Fm , (21) 
 

where the elements of the matrix G have the form  
 

gkj = G rk*
j(xξj, τj + k Δt) for j ≠ 1 , 

 

gk1 = G rk*
mj(τj + k Δt) ,  Q = [Q1, ..., Qp]

T , 
 

Fm = [ϕ r1
m1, ..., ϕ rn

m1]T , k = 0(1) l , j = 1(1) p . 

 
Since the number of sources is a priori unknown, a 

problem of choosing the needed algorithm arises. To solve 
this problem at a certain point xr , the derivative ∂ϕ/∂t is 
analyzed and the source type is identified at the first step.  
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Two cases are possible: the presence of continuous sources 
(Fig. 1 a) and of pulsed sources (Fig. 1 b or c). In the first 
case, the hypothesis on the presence of a single source is set 
up and the source parameters are determined from Eqs. (15) 
and (12) using the measurements of the concentration in 
two different groups of points. The obtained solutions are 
compared. The identification is considered as completed 
when these solutions fall within the uncertainty interval. 
Otherwise the hypothesis on the presence of the several 
sources is accepted. The number of sought–after sources is 
increased by unity and the system of equations (17) is 
solved for measurements in two groups of points. The 
number of sought–after sources is increased until the 
solutions fall within the uncertainty interval γ. For 
example, from the results of numerical experiments it was 
found that the expression for the uncertainty interval of the 
source strength has the form  
 
γQ = χ ϕ + 0.44 ξ v + 0.69 ξ μ , 

 
where χs is the relative error in assignment of the element 

s. When detecting pulsed sources, the uncertainty in their 
number is eliminated by an analysis of the field ϕ on the 
number of maxima p. When p > 1, it is necessary to 
estimate the second term in the right–hand side of 
Eq. (20) based on possibly available a priori information 
or analysis of ∂ϕ/∂t, and to use the approach based on 
Eq. (19) (a single source or separated sources) or to solve 
the system of equations (21).  

Realization of the identification procedure is reduced 
to splitting of the operator of conjugated model (5) with 
processes and coordinates7 and difference approximation 
of the obtained operators. We note that in the problems 
of the pollutant source identification a special attention 
must be given to numerical realization of the advection 
step that is caused by the presence of discontinuity of the 
function ϕ due to influence of point sources of pollutant.  

Based on a series of numerical experiments using 
widespread schemes for solving similar problems (e.g., 
those of McCormak, Laks–Wendroff, FCT, and TVD) it 
may be concluded that the explicit TVD scheme provides  

the best approximation (from the considered schemes) of 
the exact solution over all interval including 
discontinuity points. To match the digitization intervals 
in time and space, inexplicit scheme, for example, 
Krank–Nikolson scheme, should be used. Equations (15), 
(17), (19), and (21) are solved with the use of standard 
procedures.8,9  

The results of numerical experiments showed that 
the approximation error in splitting of operators (2) and 
(6) is smaller than 1%. For statistical estimation of 
quality of determining position and strength of sources, a 
series of numerical experiments was carried out using 
settlement Siverskii of the Leningrad region as an 
example. For a sample of 10 000 measurements of the 
pollutant concentration it was obtained that, for example, 
for a single continuous source with the strength 
Q = 5 g/s the confidence limits (P = 0.95) are 660 m, 
270 m, and 0.6 g/s for x, y, and Q, respectively.  
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