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An improved scheme for performing a fast Fourier-Bessel transformation for the 
radially symmetric wave equation describing the nonlinear propagation of light is 
proposed. The propagation of a strong light beam in a transparent nonuniform medium 
with a cubic nonlinearity is calculated. 

 
 

INTRODUCTION 
 

The development of numerical methods for 
calculating the equations of nonlinear optics was 
motivated by the development of laser technology and 
the widespread use of this technology in the solution of 
the problems arising in the remote diagnostics of a 
medium. When strong laser radiation propagates in 
matter the characteristics of the matter in the 
propagation channel change. Thus, for example, in the 
problems of atmospheric optics the nonlinear correction 
to the refractive Index, whose magnitude is determined 
by the contributions from molecular and aerosol 
components of the air and depends in a complicated 
manner on the character of the interaction with optical 
radiation (resonance, nonstationariness) and the 
uniformity of the medium, must be taken into account. 

The behavior of the characteristics of strong optical 
radiation along extended nonlinear paths is described 
best by algorithms based on conservative difference 
schemes.1,2 For arbitrary nonlinearity, however, there 
does not exist a universal technique for constructing 
conservative schemes. Moreover, in the case of implicit 
schemes questions regarding the convergence of the 
nonlinear system of equations obtained arise. 

In the last few years, to describe the propagation of 
axisymmetric beams, the nonlinear wave equation has 
been solved with the help of the Fourier-Bessel 
transformation,3–5 the analog of the Fourier 
transformation for one-dimensional wave equations. The 
efficiency of pseudospectral methods was demonstrated 
in Ref. 6 for the example of a finite Fourier 
transformation for the solution of nonlinear wave 
problems. The numerical algorithm described in Ref. 6 
is distinguished by the features that it includes a specific 
technique which enables taking into account correctly 
the higher order harmonics of the pseudospectral 
transformation and the difference scheme for the slow 
variable is an explicit scheme. The latter property makes 
the method of Ref. 6 very flexible and versatile, and it 
makes it possible to transfer the basic algorithm to the 

systems of equations with arbitrary nonlinearity. 
Although the indicated method is not absolutely stable, 
it nonetheless makes it possible to perform practical 
calculations with an acceptably small step. 

Successful examples of the application5 of the fast 
Fourier-Bessel transformation algorithm3 motivated us 
to construct a computational scheme of the type 
described in Ref. 6 with an improvement of the 
algorithm of Ref. 3 for radially symmetric nonlinear 
wave equations. 
 

DESCRIPTION OF THE ALGORITHM 
 

The starting equation has the form 
 

 (1) 
 
where P is an arbitrary function of the complex field . 
Equation (1) can also be one of the equations of the 
system describing the interaction of waves in a 
nonlinear medium. 

Let us apply, as done in Refs. 3–5, to (1) the 
Fourier-Bessel transformation 
 

 (2) 
 
whose inverse has the same form7 

 

 (3) 
 
where J0 is a Bessel function of the first kind. The 
Fourier-Bessel transformation has the following 
important property:7 

 

 (4) 
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It enables reducing (1) to an ordinary differential 
equation for the transform 
 

 (5) 
 

We shall solve f(5) numerically with the help of 
the ideas contained in Ref. 6 which permit taking 
into account correctly the contribution of the higher 
harmonics (  ) of the transformation (2).  
The following difference equation is the discrete 
analog of Eq. (5): 
 

 
 

 (6) 
 
constructed using the Adams-Bachfort scheme. For large 
values of  a small error in calculating B̂E  may result 
in a significant error in determining E(z + z); in the 
process the quantity B̂P  approaches zero, and Eqs. (5) 
and (6) assume asymptotically the following form: 
 

 (7) 
 

 (8) 
 

Following Ref. (6) we replace in (6) and (8) the 
quantity 2z by the correction function (z, ), 
which is sought from the condition that (8) be the 
exact discrete analog of Eq. (7): 
 

 (9) 
 

Solving Eq. (7) we obtain 
 

 (10) 
 

Substituting (10) into (9) we obtain an equation for 
the correction function (z, ), whose solution has 
the form 
 

 (11) 
 

We note that for z2 ` 1 the equality (z, ) > z2 
holds to within second order-terms. For this reason the 
difference scheme 
 

 
 

 
 

 (12) 
 

gives the same accuracy of approximation as the 
Adams-Bachfort scheme, O(z2), and it also makes it 
possible to avoid the increase in error for large values 
of . Applying to Eq. (12) the inverse Fourier-Bessel 
transformation we obtain the basic equation employed 
in the further calculations: 
 

 
 

 (13) 
 

NUMERICAL IMPLEMENTATION OF THE 
FOURIER-BESSEL TRANSFORMATION 

 
As one can see from Eq. (13), to calculate the. 

field the Fourier-Bessel transformation must be 
performed twice at each step in z. When the integral is 
approximated directly by a sum this procedure is very 
time consuming; the number of arithmetic operations 
required is proportional to N2, where N is the number 
of nodes in the discrete approximation of the integral 
(2). In Ref. 3 Siegman reduced, with the help of 
Gardner’s substitution of variables, the integral (2) to 
a sum which is calculated with the help of the fast 
Fourier transform. Thus the number of operations 
becomes proportional to N lnN. In Ref. 3, however, 
the approximation of the integral (2) is very rough and 
cannot be used to solve Eq. (1) numerically when the 
Fourier-Bessel transformation is employed repeatedly. 
We modified Siegman’s computational scheme by 
using special techniques to integrate rapidly 
oscillating functions numerically. 

We choose a discrete set of values rn and m: 
 

 
 

 
 

 (14) 
 
The integral (2) can be represented as a sum 
 

 (15) 
 
The upper limit of the integral in Eq. (15) is chosen to 
be finite but quite large; such a choice can always be 
made, if the field (r, z) decreases as   , which is 
a natural condition for real beams. 

We shall assume that the slowly varying function 
E(r, z) is constant on each segment of the integration: 
 

 (16) 
 

Then the integrals in (15) can be calculated 
analytically, and the following sum is obtained:  
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 (17) 
 
which it is more convenient to transform into the form 
 

 (18) 
 
To accelerate the computation of the sum (18) we 
employed a fast Fourier transform algorithm that is 
identical to the one employed in Ref. 3, making the 
assumption that 
 

 (19) 
 
though these terms can also be defined differently. 
 

EXAMPLES OF APPLICATIONS 
 

As an example we shall study the propagation of 
a light beam in a transparent nonuniform medium with 
a cubic nonlinearity. In this case, the main equation 
(13) assumes the form (see, for example, Ref. 5): 
 

 
 

 
 

 (20) 
 

where 2 2 1/2
0 c 0 0( ) / ;V kw N N N   k is the wave 

number; w0 is the characteristic radius of the 
nonuniformity; R = Ld/Lnl; where Ld is the 
diffraction length and Lnl is the length of the 
nonlinearity, 
 

 (21) 
 
nc and n0 are the values of the refractive index at the 
center (r = 0) and at the periphery (r = ) of the 
nonuniformity of the medium; the function U(r) 

determines the profile of the nonuniformity; 
2

2 0N E  

is the nonlinear correction to the refraction index; and, 
0 is the initial value of the amplitude of the field on 
the z axis. With this definition of R the quantity E in 
Eq. (20) is measured in units of 0 .E The choice of the 

parameters r1, , and N is largely arbitrary, but in 
order to ensure that the boundary conditions Eire 
satisfied in the limit r   the field E(r, z) at the 
points rn with n close to N must be quite small in 
absolute magnitude. In addition, near the axis of the 
beam the step in r must be small enough so that the 
details of the profile of the field are reproduced. We 
employed r1 = 0.08,  = 0.03, and N = 128, which 

values were chosen by an empirical method. The same 
values of the parameters were also employed to 
construct a grid in the space of the variable. 

The input' data for the program were as follows: 
1) the parameters of the discrete coordinate grid r1, 1, 
, N, and z as well as the starting and final values of 
z; 2) the profile of the field intensity E(z = 0) at the 
start of the medium; 3) the profile of the refractive 
index of the medium U(r); and, 4) the coefficients V 
and R, characterizing, respectively, the depth of the 
profile of the nonuniformity of the medium and the 
magnitude of the cubic nonlinearity. The parameter R 
is actually determined by the strength of the beam at 
the start. At each step in z the program computes a 
discrete set of values of the real and imaginary parts of 
the amplitude of the electric field E(r, z) according to 
Eq. (20). To describe the profile of the field 
quantitatively and monitor the calculations the total 
power 
 

 (22) 
 

and the cross section of the beam scaled to the intensity 
 

 (23) 
 

were printed out at each point z of interest. The 
integrals in (24) and (25) were calculated using the 
trapezoidal rule. 

The propagation of a beam with an initial 
gaussian field profile 
 

 (24) 
 
and a starting plane wavefront was studied as a 
function of V and R in a medium with a gaussian 
U = exp(–r2) and hypergaussian U = exp(–r6) 
profiles of the nonuniformity. For numerical 
convenience the value 0 = 0 was chosen; this made it 
possible to employ the same discrete coordinate grid in 
r all cases. 

1. Nonuniformity with a gaussian profile. 
Figure 1 shows the computed beam cross sections 
scaled to the starting value as a function of the 
dimensionless coordinate z measured in diffraction 
lengths. For V = 0 (a uniform linear medium) free 
diffraction of the beam is obtained (curve 1); in 
accordance with the well-known analytical solution 
this doubles the cross section at a distance of 1/0 from 
the start. For V = 0 a weak nonuniformity of the 
medium slows down the divergence somewhat 
(curve 2). For V = 20 (curve 3) "trapping" of the 
beam, whose cross section starts to oscillate, occurs; 
this is a natural result of the simultaneous 
manifestation of focusing and diffraction. As V is 
further increased the period of the oscillations 
decreases approximately linearly, and the phase is 
reversed, since for large V and small z the focusing 
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starts to predominate over diffraction. Of the values 
studied V = 2.3 0 (curve 5) is closest to the case 
when the input field is almost Identical to the 
fundamental characteristics mode of the medium. 

Figure 2 illustrates the effect of nonlinearity on 
the propagation of a beam close to the characteristic 
mode (V = 2.3 0). One can see that as R increases 
the focusing action of the nonuniform medium 
increases, the amplitude of the oscillation of the beam 
cross section increases, and at the same time the period 
of these oscillations remains practically constant. In 
the case of high intensities (R = 5) a beam which, 
being weak, would propagate in an almost stationary 
fashion, is focused approximately to 0.6 of its initial 
cross section over a distance of about 0.5 Ld, 
 

 
 
FIG. 1 The behavior of the cross section of a beam 
in a medium with a gaussian nonuniformity of the 
refractive index R = 0: 0 = ; 1 – V = 0; 
2 – V = 0; 3 – V = 2 0; 4 – V = 2.25 0; 
5 – V = 2.3 0; 6 – V = 2.5 0; 7 – V = 3 0. 

 
It is interesting to compare the profiles of beams 

focused approximately to the same value 2(z) but for 
different reasons: owing to an increase in V at R = 0 
and owing to nonlinearity. In Fig. 3 the profile E  of 
maximally focused beams, corresponding to the minima 
on curve 7 in Fig. 1 and curve 4 in Fig. 2, is compared 
with the effective gaussian profile. It is obvious that 
focusing owing to nonlinearity (Fig. 3a) causes a 
significantly larger deviation of the field profile from the 
gaussian form than in the case of focusing owing to 
deepening of the profile of the nonuniformity of a linear 
medium (Fig. 3b); in addition, the nonlinearity 
sharpens the profile and Increases the energy 
concentrated in the part of the beam near the axis. 
 

 
 
FIG. 2. The effect of nonlinearity on the 
propagation of a gaussian beam in a nonuniform 
medium with a gaussian profile of the refractive 
index: 0 = ; V = 2.3 0; 1 – R = 0; 
2 – R = 1; 3 – R = 3; 4 – R = 5. 

 

 
 
FIG. 3. Deviation of the profile of the modulus of 
the amplitude of the field from a gaussian form at 
the points of maximum focusing: a – owing to 
nonlinearity (V = 2.3 0, R = 5); b – owing to 
nonuniformity of the linear medium (V = 30, 
R = 0); 1 – profiles calculated by our method; 
2 – effective gaussian profiles. 

 
2. Nonuniformity with a hypergaussian profile. 

Analogous studies were performed for a hypergaussian 
profile of the refractive index V = exp(–r6) which is 
closer to a square profile. Figure 4 shows that in the 
linear regime the growth of V on the whole leads to the 
same consequences as in the case of a nonuniform with 
a gaussian profile. The difference lies in the fact that 
focusing on the starting segment starts for 
significantly larger values of V, V = 4 0, instead of 
V = 2.3 0. Another significant difference is that fine 
structure appears in the graph of 2(z) (curve 3) with 
almost stationary propagation of the beam. This 
structure was reproduced in a stable fashion with an  
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accuracy of not worse than several percent as the step 
z was varied from 0.002 up to 0.005: this removed the 
initial suspensions that it is related with the numerical 
error. Analysis of the evolution of the profile E  in 

this case showed that in those sections where 2(z) was 
maximum and equal to the starting value, the profile 
had a sharp peak and comparatively slowly decaying 
wings. In those sections where 2(z) is minimum the 
peak of the profile becomes flat (a shallow and very 
wide dip can occur at the center) and the wings become 
steep. These features can be explained by the effective 
excitation of at least the two lowest characteristic 
modes of the nonuniform medium, and in addition  the 
magnitude and sign of the contribution of the highest 
of these modes change as a function of z. 
 

 
 
FIG. 4. The linear regime of the propagation of a 
beam with a gaussian starting profile in a medium 
with a hypergaussian nonuniformity. The fine 
structure of curve 3 is shown separately: 
1 – V = 0; 2 – V = 3 0; 3 – V = 4 0; 
4 – V = 5 0, R = 0. 

 
As in the preceding case, the nonlinearity is 

manifested as increased focusing of the beam (Fig. 5), 
and the fine structure described above is smoothed out 
(transition from curve 1 to curve 4). This can be 
explained by the effect of the contribution N2 E2 to 
the refractive index owing to which the part of the 
hypergaussian profile of the nonuniformity near the 
axis becomes less flat; the profile approaches a 
gaussian profile.  

In all of the calculations performed the total 
power W which in the absence of losses should be 
constant was monitored. The drift of W from its 
starting value did not exceed several percent. 
 

 
 
FIG. 5. The effect of nonlinearity on the 
propagation of a beam in a medium with a 
nonuniformity having a hypergaussian profile: 
V =4 0; 1 – R = 0; 2 – R = 1; 3 – R = 2; 
4 – R = 4. 

 
The results obtained indicate that the cubic 

nonlinearity strongly affects the propagation of a 
gaussian beam in an axisymmetric nonuniform 
medium. They also demonstrate that the 
computational algorithm which we developed can be 
effectively employed for modeling the propagation of 
light beams in nonlinear nonuniform media of different 
nature, in particular, in problems of laser sounding of 
the atmosphere and atmospheric optics. 

We are grateful to L.A. Mel’nikov for useful 
discussions and A.D. Novikov for assistance in the 
computer calculations. 
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