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The main effective parameters of high-power femtosecond laser radiation (energy transfer 

coefficient, effective radius, effective duration, limiting angular divergence, and effective intensity) 
during its propagation along a horizontal atmospheric path under conditions of filamentation have 
been investigated theoretically. It is shown that the process of self-action of this radiation is 
characterized by formation of a nonlinearity layer, behind which the radiation propagates linearly 
with the limiting divergence lower than the initial diffraction-limited divergence of the beam. The 
effective pulse duration and the effective beam radius increase after the passage through the 
nonlinearity layer, and their values are mostly determined by the initial beam power and weakly 
depend on the initial spatial focusing of the beam. The coefficient of energy transmission for the 
femtosecond pulse is lower than in the linear medium and has a tendency to decrease with the 
increasing radiation power. 

 

Introduction 
 
The propagation of high-power laser radiation of 

femtosecond duration through gaseous and condensed 
media occurs in the nonlinear regime and leads to 
significant changes in the temporal, spatial, and 
spectral characteristics of the light beam.1 As known, 
for the stationary self-action of laser radiation, it is 
convenient to study the transformation of its energy 
characteristics in terms of effective parameters, such 
as the power (energy) transfer coefficient, beam radius, 
angular divergence, and intensity, which characterize 
the global changes in the light beam. In some cases, 
for example, at stationary self-focusing in a cubic-
nonlinearity medium2 and thermal blooming of long 
laser pulses,3 for some of the effective characteristics 
it is possible to write equations, which can be analyzed 
qualitatively or quantitatively. 

The self-action of ultrashort laser pulses in the 
atmospheric air occurs with the participation of a 
large number of physical factors, which determine the 
process of radiation propagation and can be in dynamic 
balance with each other. These factors include the 
effects of diffraction and Kerr nonlinear refraction, as 
well as the effects occurring against their background. 
These effects are associated with the formation of an 
ionized channel inside the beam at multiphoton 
absorption in a strong light field (nonlinear refraction 
of radiation and absorption in plasma), as well as 
with the frequency dispersion of the air. 

In the general case, to correctly describe self-
focusing of femtosecond pulses, it is necessary to solve 
numerically the four-dimensional wave equation for 
the electric field vector, which is a difficult problem 
even for modern computers. The description of the 
phenomenon of self-focusing in terms of the effective 
characteristics of radiation is productive, because it 

allows one to follow the main transformations 
occurring with the beam in a nonlinear medium and 
to predict its propagation to distances, far exceeding 
the diffraction length of the initial beam. 

In this paper, the numerical solution of the 
nonlinear Schrödinger equation for the complex 

envelope of the field of the spatially limited 

femtosecond laser pulse propagating in the atmospheric 
air is used to study the change of the effective 
parameters of the pulse, namely, the energy transfer 
coefficient, the effective radius, the effective duration, 
the limiting angular divergence, and the effective 
intensity. The dependences of these parameters on the 
initial power of radiation and the parameter of 
spatial focusing are established. 

 

Integral parameters of a light pulse 
 
One of the main integral parameters of a laser 

pulse is the coefficient of transfer of the light energy 
once the beam passes the distance z: 

 e 0( ) ( ) ,T z E z E=  (1) 

where E(z) and E0 are the current and the initial 
values of the total energy of the light pulse. 

Another integral parameter is the effective radius 
of the light beam Re, whose square is determined as a 
normalized second-order moment of the transversal 
radiation energy density profile ( , )w z⊥r : 
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In Eq. (2) 
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is the coordinate of the beam centroid. It is obvious 
that for the beams with the symmetric spatial intensity 
profile the beam centroid is always located at the 
beam axis, if the medium is initially optically 

homogeneous.  Therefore,  below  we  assume Rg = 0. 
Similarly, for the nonstationary self-action we can 

introduce the effective pulse duration tpe, determined 
from the temporal profile of the total beam power 
P(t; z): 

 2 2 2
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is the temporal position of the power maximum at 
every point of the optical path. 

One more important parameter is  
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which determines the square of the limiting divergence 

of the beam 2
e∞θ  at z → ∞. 

The use of integral parameters for description of 
the propagation of a light beam is essentially 

equivalent to the replacement of the real 
spatiotemporal intensity profile by the uniform 
distribution over a circle with the radius Re(z), 
rectangular in time with the duration tpe(z), and the 
effective intensity  

 ( )2
e e pe( ) ( ) ( ) ( ) .I z E z R z t z= π  (5) 

With the introduced integral characteristics (1)–
(5), let us analyze the main stages of nonstationary 
self-focusing of the femtosecond laser pulse. 

 

Mathematical model of self-focusing  
of a femtosecond light pulse in air 

 
The numerical calculations were performed based 

on the nonlinear Schrödinger equation, describing the 
propagation of an electromagnetic wave through a 
medium in the approximation of a slowly varying 
field amplitude. For the complex envelope of the 
electric field of the light wave ( , ; )U z t⊥r  in the 

coordinate system moving with the group velocity of 
the pulse, this equation has the form (see, for 
example, Ref. 4): 
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where ω0 is the central frequency of the laser radiation; 
k0 = n0ω0/c is the wave number; ′′k  = ∂2k/∂ω2

 is the 
dispersion of the group velocity; n2 is the coefficient 
of the nonlinear addition to the refractive index of a 
gas n0; fR is the specific fraction of the delayed Kerr 
effect with the response function Λ(t – t′) [Ref. 5] in 
the total change of the nonlinear refractive index 
(usually fR = 0.5 is taken); τc is the characteristic 
electron collision time; ( )

MPA
mη  and ηcas is the rate of 

the m-photon and cascade ionization of a gas, 
respectively. Equation (6) accounts for the diffraction 
of the light wave in the presence of frequency 
dispersion of the air, as well as for the main physical 
mechanisms of the medium nonlinearity for the 
ultrashort radiation: instantaneous and delayed Kerr 
effect, absorption and refraction of radiation by plasma 
produced as a result of gas ionization. 

The change in the concentration of free electrons 
ρe was calculated by the model of quasi-equilibrium 
plasma, neglecting the loss for recombination: 
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where ∆Ei is the effective ionization potential of air 
molecules. 
 

Results and discussion 
 
In the dissipation-free medium with nonlinearity 

of the Kerr type with no frequency dispersion and 
nonlinear aberrations of the beam, the parameters Te, 

2
e,θ  tpe are invariant with respect to z up to the 

nonlinear focus, what shows the square dependence of 
the effective radius along the longitudinal coordinate 
and the constancy of its temporal profile.6 At self-
focusing of the ultrashort radiation pulse plasma is 
produced, as a result of the multiphoton ionization of 
the medium, in the zones of maximum intensity. This 
plasma causes the nonlinear absorption of light wave 
and its defocusing. The joint manifestation of the 

effects of Kerr self-focusing and defocusing in plasma 
leads to a strong phase self-modulation of radiation 
and distorts the invariance of these parameters. 

Figures 1 to 3 show the dependence (along the 
propagation path) of the normalized parameters  

 2 2 2
e e 0( ) ( )/ ;R z R z R=  ( )( )2 2 2 2 2 2

e e 0 0d d 2 ;R z k Rθ =  

 pe pe p( ) ( )/ ;t z t z t=  and e e 0( ) ( )/ ,I z I z I=  

obtained from the numerical simulation of atmospheric 
self-action of a laser pulse with the Gaussian 
spatiotemporal profile and the following parameters: 
wavelength λ0 = 810 nm, duration tp = 80 fs, radius 
R0 = 1 mm, the radius of curvature of the initial wave 
front F = 1.2LR, peak power P0 = 15Pc (critical self-
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focusing power Pc = 3.2 GW). These figures also 
show the geometric square size of the beam Rf, 
determined from the half-maximum of the beam 
energy density, as a function of the distance. All the 
parameters are normalized to their initial values at 
z = 0, while the variable z itself is normalized to the 
Rayleigh length of the beam LR = 2

0 01/2( ).k R  
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Fig. 1. Square normalized effective radius 2
eR  of the 

femtosecond beam propagating in air: (a) complete model 
(1); linear diffraction of the focused (2) and collimated (3) 
beams; square radius (Rf /R0)2 of the filamented part of the 
beam (4); (b) dependence of the parameter 2

eθ  on the 
longitudinal coordinate during the propagation of the light 
beam in the air in the regime of self-action (1) and linear 
diffraction (2, 3); curve 3 shows the linear propagation of 
the collimated beam (parameters of radiation are the same). 
 

It can be seen from Fig. 1 that, at the initial 
stage of self-action, the quick transversal compression 
of the beam occurs due to the Kerr effect. The increase 
of the peak intensity of the radiation (see Fig. 2) and 
the related strong multiphoton absorption lead to the 
ionization of the medium and give rise to plasma. The 
defocusing effect of the plasma along with the 
radiation power inputs to the maintenance of plasma 
stop the collapse of the beam, leading to the formation 
of a stable waveguide channel (filament) at the beam 
axis. This filament has a quasi-Bessel spatial intensity 
distribution (Fig. 4) and weak angular divergence. 
The transverse dimension of the filament Rf in the  
air varies within ∼ 75–150 µm at the peak intensity  
 

∼1014 W/cm2 in the filament. The coordinate of the 
beginning of filamentation zf (local nonlinear focus) 
depends on the initial peak power of the pulse Ð0 
and, within the accuracy satisfactory for the collimated 
radiation, it is determined by the known equation 

6: 
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Fig. 2. Spatial variation of the effective radiation intensity 

eI  along the propagation path for beams with the initial 
peak power P0 = 6Pc (1) and 15Pc (2). 
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Fig. 3. Normalized effective duration of the laser pulse pet  

as a function of the evolution variable. The parameters of 
radiation are the same as in Fig. 2. 
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Fig. 4. Transverse profile (along the coordinate x) of the 
normalized light energy density of the laser beam 
(tp = 80 fs, F = 1.2LR, P0 = 15Pc) at the distance z = 0.5LR 

from the path start point. 



A.A. Zemlyanov and Yu.E. Geints Vol. 18,  No. 7 /July  2005/ Atmos. Oceanic Opt.  517 
 

 

The formation of a filament does not terminate 
the compression of the beam as a whole, and therefore 
the position of the nonlinear focus zsf, determined 
from the minimum of the effective radius Re, appears 
to be to the right (along the coordinate z) from the 
local focus zf. The position of the "global" focus zsf 
corresponds to the value obtained within the 

framework of the aberration-free theory of self-
focusing of the Gaussian beam 

6 at the beam power 
equal to the peak one, when the parabolic dependence 
of the effective beam radius on the evolution variable 
is valid: 

 ( )
2 2

2 2
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R
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Hence, assuming 
2
e sf( ) 0,R z =  under the condition 

η > 1 we obtain the position of the beam self-
focusing point: 
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Just after the nonlinear focus, the effective area 
of the beam increases sharply, and the beam 
divergence near the point zsf (see Fig. 1b) is close to 
that of the focused Gaussian beam in the linear 
medium with the initial radius of curvature of the 
phase front F equal to zsf. During this, despite the 
strong diffraction widening of the power-intense part 
of the beam, the radius of the axial filament generally 
does not change. This is indicative of the spatial 
stability of the filament, resulting from the dynamic 
balance between the Kerr focusing, plasma defocusing, 
and multiphoton absorption near the beam axis. 

In the same zone, one can see the increase of the 
effective duration of the laser pulse (see Fig. 3) due 
to dispersion of the group velocity of light in the air. 
Estimating the length Lds, at which the effective 
pulse duration increases by 2  times, from Fig. 3, we 
find that Lds is on the order of the Rayleigh length of 
the initial beam LR. At the same time, Lds/LR ∼ 100 
if determined from the initial profile. That significant 
decrease in the dispersion length is connected with 
the fragmentation of the temporal profile of the 
initial pulse into a series of much shorter pulses 
(∼0.1tp), occurring against the background of the 
strong phase self-modulation. The pulse with the 
initially Gaussian temporal profile transforms into a 
series of time- and spatially separated individual 
pulses, experiencing much stronger dispersion 

blooming than the initial profile. 
The following spatial zone z/LR > 0.6–1.6 is 

characterized by the lower rates of growth of the 
effective beam radius and the decrease of the angular 
divergence of the beam (see Fig. 1). This is a 
consequence of sequential re-focusing of the periphery 
zone of the beam, having lower intensities, on 
concentric toroidal nonlinear lenses, formed at the 
previous stage around the filament. The transverse 
energy density distribution of the light beam, as can 

be seen from Fig. 4, is similar to the profile of the 
Gauss–Bessel beam, which is characterized by the 
lower angular divergence than  in the Gaussian beam. 

Beyond this "transient" zone, the dependence 
2
e ( )R z  becomes a square one, and the limiting 

divergence of the beam θå∞ is formed. Thus, the value 
of the spatial variable z ≡ LN > 1.6LR can be considered 

as some conditional boundary of the medium 
nonlinearity layer, behind which the evolution of the 
effective beam parameters obeys the linear laws of 
diffraction. The calculations show that as the initial 
power of the light beam increases, the right boundary 
of this nonlinearity layer shifts toward smaller z, and 
the thickness of the layer decreases. 

From Figs. 1 and 3 we can conclude that the 

variations of the square effective beam radius 2
e ( )R z  

and the effective pulse duration tpe(z) behind the 
nonlinearity layer obey the following laws: 

 ( )22 2 2
e 0N e N( ) – ;R z R z L∞= + θ  

 ( ) 2
pe pe N dsN( ) ( ) 1 – ,Nt z t L z L L= +     N,z L≥  

that is, coincide with the known dependences for the 
linear regime of beam propagation in a medium with 
dispersion, characterized by the new effective length 
LdsN. For the radiation parameters considered in the 
calculations, LdsN > LN. 

Figure 5 depicts the energy transfer coefficient of 
the light beam Te, achieved at the distance z = 2LR 

with different initial radiation power. It can be seen 
that beams of higher power are characterized by the 
higher nonlinear losses along the path. The calculations 
show that the main channel of dissipation of the light 
energy is the multiphoton absorption in a gas, which 
forms a plasma filament on the beam axis. As a result, 
beams with sharper focusing (and, consequently, 
higher intensity in the zone of the "global" focus) are 
characterized by relatively high nonlinear losses as 
compared with the long-focus beams and by the lower 
energy transfer coefficient at the end of the path. 
However, the influence of the spatial focusing of the 
beam on Te is normally low. 
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Fig. 5. Energy transfer coefficient Te as a function of the 
relative initial power of the light beam with F = 0.6LR (1) 
and 1.2LR (2) at z = 2LR. 
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The dependence of the normalized limiting 
angular divergence e e D,∞ ∞θ = θ θ  where –1

D 0 0( )k Rθ =  
is the diffraction-limited divergence of the initial 
beam, on the relative beam power η at the different 
initial curvature of its phase front is shown in Fig. 6. 
The parameter e∞θ  was estimated from its value at 
the point z = 2LR. We can see the general tendency 
toward a decrease in the limiting divergence with the 
increase of the beam power, and at η > 20 the 
angular divergence becomes even lower than in the 
collimated beam (F → ∞) of the same initial radius in 
the linear medium. Moreover, the limiting divergence 
of high-power beams appears to be almost independent 
of their initial spatial focusing. The interpolation 

analysis of the level, the value e∞θ  tends to at large η, 
has shown that it roughly corresponds to the value of 
the linear diffraction-limited divergence of the 

collimated Gaussian beam with the initial radius 
R0N = Re(LN); in this case, R0N = 3R0 (Fig. 6, curve 6). 
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Fig. 6. Normalized limiting effective angular divergence of 
the laser beam e∞θ  as a function of the initial peak power at 
nonstationary self-action (1, 2) and at linear diffraction in 
the air (3–6). The conditions of the beam focusing 
correspond to: F = 0.6LR (1, 3); 1.2LR (2, 4). Lines 5 and 6 
show the parameter eθ  of the collimated radiation with 
R0 /R0N = 1 and 3, respectively. Line 7 shows the angular 
divergence of the central part of the beam after the collapse 
of the filament. 

 
If we consider separately the spatial dynamics of 

the central part of the beam, then we can see the 
zones, in which the light filament is formed, and, as 
follows from Fig. 6 (curve 7), after the collapse of 
the filament, the angular divergence of the central 
part remains approximately constant regardless of the 
variation of η. In this case, the value of the 
derivative (dRf/dz) is much smaller than the angle, 
at which the light beam of the radius Rf would 
propagate in a linear medium. 

Figure 7 shows R0N in relative units as a function 
of the power parameter η. Along with the increase of 
the "boundary" effective beam radius and the increase 

of its power, we can also see saturation of this 

dependence, and the curves with different values of 

the focusing parameter F, as in the case with e∞θ , 
tend to the same level. 
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Fig. 7. Normalized effective radius of the light beam R0N at 
the exit from the nonlinear layer as a function of the initial 
radiation power at F = 0.6LR (1) and 1.2LR (2). 

 
It should be noted that the numerical calculations, 

whose results are presented in this paper, were carried 
out using an ideal spatial profile of the light beam 

and in the absence of turbulence in the medium. In 
this case, at self-action of pulses, the maximum of 
the radiation intensity lies on the beam axis and only 
one axial filament is produced. Perturbations of the 
amplitude and phase of the light wave, arising due to 
imperfections in the optical system forming the beam 
and the effect of turbulence in the medium of 
propagation, in some cases lead to multiple 

filamentation over the whole cross section of the 
femtosecond beam, and the higher the beam power, 
the  more  pronounced  is  the multiple filamentation. 

This self-action regime will change the particular 
values of the effective characteristics presented here 
and increase the medium nonlinearity layer and the 
limiting angular divergence of the beam. However, 
the general regularities of evolution of the effective 
laser pulse parameters (existence of three spatial zones: 
focusing zone, transient zone, linear zone) will keep 
the same, in our opinion. 

 
Conclusions 

 
Based on the analysis of the integral 

characteristics of the light beam (energy transfer 
coefficient, effective radius, effective duration, 
limiting angular divergence, effective intensity), the 
process of nonstationary self-focusing of the 

femtosecond laser radiation in the atmospheric air has 
been studied. 

The effective parameters of the beam have been 
calculated based on the numerical solution of the 
nonlinear Schrödinger equation with allowance for the 
effects of diffraction, dispersion of the group velocity 

of the light pulse, Kerr self-focusing, multiphoton 
absorption, and plasma defocusing of radiation. 
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It has been found that, on the basis of the 
evolution of effective parameters along the optical 
path, it is possible to isolate three spatial zones, 
corresponding to the different stages of nonstationary 
self-focusing of the radiation: the zone of transversal 
compression of the beam and filament formation, the 
zone of sharp increase of the effective area of the 
beam after the "global" nonlinear focus, and the zone 
of linear diffraction of the radiation. 

The analysis made shows that, by the end of the 
second zone, which serves a boundary of the medium 
nonlinearity layer LN, the light beam "forgets" about 
its initial scale parameters and propagates in the 
linear regime. 

The effective parameters of the radiation Te, R0N, 
tpe(LN), and θå∞ are mostly determined by the beam 
power and weakly depend on the initial spatial 
focusing of the beam. With the increase of the initial 
power of the light beam, its effective size and the 
effective duration at the boundary of the medium 
nonlinearity layer increase, while the limiting 

divergence decreases. At the same time, the thickness 
of the nonlinearity layer itself decreases. 
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