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A lateral shear interferometer operation based on double–exposure recording of a 
Fourier hologram of a matted screen illuminated with a diffusely scattered coherent 
light is analyzed. It is shown theoretically and experimentally that spatial filtering in 
the plane of the hologram enables one to check the lens or objective wave aberrations 
over the field. 

 
In Ref. 1 a performance of a technique is described for 

constructing lateral shear interferograms in fringes of 
infinite width based on double�exposure recording of a lens 
Fourier hologram of a matted screen illuminated with a 
diffusely scattered light field and using a compensation for 
a phase change introduced into the light wave due to 
transverse shift of the matted screen in the hologram plane 
by virtue of tilting the quasiplanar wavefront of the 
reference wave. In this technique a matted screen is 
illuminated with a coherent radiation of a quasiplanar light 
wave. As a result the recorded interference pattern 
characterizes, in the general case, the wave aberrations of a 
converging lens used for recording the hologram as well as 
the wave aberrations of the optical system forming the 
wavefront of light used to illuminate the matted screen. 
This same result is obtained at the double�exposure 
recording of the Fourier transforms of a matted screen on a 
photographic plate when illuminating the screen with a 
converging quasispherical wave2 as well as when forming 
the Fourier transform with a diverging lens.3 

In Refs. 4 and 5 the double�exposure recording of the 
Fourier hologram of a matted screen has been performed by 
illuminating the screen with a diverging spherical wave 
which can be formed aberrationless provided that a spatial 
filtering is used.6 

As a consequence this enables recording the lateral 
shear interferograms that bear information only about the 
wave aberrations of a converging lens under control. 

In this paper we consider the formation of the lateral 
shear interference patterns in fringes of infinite width using 
a double�exposure recording of a lens Fourier hologram of a 
matted screen illuminated with a coherent diffusely 
scattered radiation that also allows one to eliminate the 
wave aberrations in the channel of the matted screen 
illumination. 

As shown in Fig. 1a the matted screen 1 placed in the 
plane (x

1
, y

1
) is illuminated by a small–aperture laser beam 

so that diffusely scattered on it radiation illuminates the 
matted screen 2 placed at a distance L in the plane (x

2
, y

2
). 

Then the diffusely scattered on the screen 2 the radiation 
passes through the lens L

1
 under control and the first 

exposure recording of the Fourier hologram of the matted 
screen 2 is performed on the photographic plate 3 using a 
quasispherical diverging reference wave 4. Before making 
the second exposure recording the matted screen 2 is 
displaced in its plane, for example along the x axis by an 
amount a and the angle of incidence of the spatially limited 
reference beam is changed in the plane (x, z) from θ

1
 to θ

2
. 

In the Fresnel approximation neglecting the amplitude 
and phase factors, which are constant, the complex 
amplitude of the field in the plane of the photographic plate 
(x

4
, y

4
) for the first exposure is  
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where k is the wave number, t
1
(x

1
, y

1
) and t

2
(x

2
, y

2
) are the 

complex transmission amplitudes of the matted screens 1 and 
2, respectively (these values are random functions of 
coordinates), p

1
(x

3
, y

3
)expiϕ

1
(x

3
, y

3
) is the generalized pupil 

function7 of the lens L
1
 allowing for its axial wave 

aberrations, f
1
 is the focal length of the lens L

1
, and l

1
 and l

2
 

are the distances from the principal plane of the lens 
L

1
(x

3
, y

3
) to the plane of the matted screen 2 and to the plane 

of the photographic plate. 
Under conditions that 1/l
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 – 1/f

1 
+ 1/l
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= 1/M > 0 

and L = l
1

2/(M – l
1
) Eq. (1) can be reduced to the form 

 

u
1
(x

4
, y

4
) ∼ exp[ik(x

4
2 + y

4
2)/2l

2
] 2exp[– ik(x

4
2 + y

4
2)M/2l

2
2] × 

×
 
{t

1
(– μ

1
x

4
, – μ

1
y

4
) exp[ikμ

1
2(x

4
2 + y

4
2)/2L]⊗ 

⊗F[kx
4
M/l

1
l
2
,
 
ky

4
M/l

1
l
2
]⊗P

1
(x

4
, y

4
)} ; (2) 

 

where the symbol ⊗ denotes the operation of convolution, 
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is the Fourier transform of the matted screen 2 transmission 
function, and  
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is the Fourier transform of the generalized pupil function of 
a lens under control. 

Within a region in the plane of the photographic plate 
with the diameter D ≤ d

1
l
1
/M, where d

1
 is the diameter of 

the lens L
1
 pupil, relation (2) takes the form5 
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Let the diameter of the laser beam in the plane of the 
matted screen 1 be d

0
, then the size of the existence domain 

of the function t
1
(– μ
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) is determined by the 

value d
0
l
1
l
2
/LM. Thus, as it follows from Eq. (3) the field 

distribution over the plane of the photographic plate 
corresponds to the Fourier transform of the matted screen 2 
transmission function, which is convoluted with the 
function t
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). Pulse response of 

the resultant transform is wider than the pulse response 
governed by the lens L

1
 by the value of the existence 
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). In addition, 
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which describes the distribution of the phase of a diverging 
spherical wave with the radius of curvature l

2
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(see Ref. 5). 
 

 
 

FIG. 1. The optical schemes used for recording (a) and 
reconstructing (b) a double–exposure Fourier hologram of 
a matted screen; 1 and 2) matted screen, 3) photographic 
plate hologram, 4) reference beam, and 5) plane of 
recording the interference pattern. L

1
 and L

2
 are lenses, 

p
1
 is an aperture diaphragm; and, p

2
 is a filtering 

diaphragm. 
 

Based on the known property of the Fourier transform 
the distribution of the complex amplitude of the diffusely 
scattered field over the plane of the photographic plate, in 
the case of the second exposure, can be written by  
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Within the approach used here the complex amplitudes 
of reference waves in the plane of the photographic plate 
take the following form 
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where r = l
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) is a function characterizing 

the phase distortions of the reference wave owing to wave 
aberrations of the optical system forming it, and b is the shift 
caused by the change of the slope angle of the spatially 
limited reference beam before the second exposure. 

The distribution of light intensity over the double–
exposure hologram is presented then as a sum of two 
intensity distributions being the interferograms produced by 
the object and reference beams, respectively 
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Let us then assume the amplitude transmission 
coefficient of the hologram to be a linear function of the 
intensity. Let the hologram be illuminated with a plane 
monochromatic wave incident on the hologram at an angle 
θ

1
 with respect to its plane, the complex amplitude of the 

wave being represented by the function exp ikx
4
sinθ

1
. Then, 

as it follows from Eqs. (3), (4), and (5), the distribution of 
field over the hologram plane in the minus first order of 
diffraction is 
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The period of the function exp(ikaMx
4
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) entering 

into this formula is λl
1
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/aM, where λ is the wavelength of 

coherent light used for recording and reconstructing of the 
hologram. If this period is not less than the existence domain 
size of the function t
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a ≤ λL/d
0
, or in other words, when the amount of the matted 

screen 2 shift before the second exposure does not exceed the 
size of a minimum objective speckle8 in its plane, in Eq. (6) 
one can remove the factor characterizing linear distribution of 
the phase from the integrand of the integral of convolution 
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relation (6) is reduced to the form 
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As can be seen from Eq. (7), the subjective speckle 
fields of two exposures coincide in the plane of hologram 
when the relative angle of slope between them is 
α = aM/l

1
l
2
. That means that in the hologram plane the 

interference pattern formed due to aberrations of the 
reference wave is localized.5 If an opaque screen P

2
 (see 

Fig. 1b) with a hole is placed in the hologram plane so that 
the hole center is on the optical axis and if the width of an 
interference fringe of the interference pattern localized in 
the hologram plane does not exceed the diameter of the 
hole, i.e., the condition that ϕ
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is fulfilled the diffraction field at the exit of the hole is  
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where p
2
(x

4
, y

4
) is the transmission function of the screen 

with a round hole.9 
Let the light field in the back focal plane of the lens L

2
 

(see Fig. 1b; f
2
 is the lens L

2
 focal length) be represented by 

the Fourier integral of the light field in the plane of spatial 
filtration, then, by making use of the basic Fourier integral 
relations, we have 
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are the Fourier transforms of the corresponding functions. 
As follows from relation (9), the identical speckle fields 

of both exposures in the plane of the matted screen image 
coincide within the region in which the images of the lens L

1
 

pupil overlap. This means, in turn, that the interference 
pattern is localized in the plane (x
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). Virtually, if the 
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), then in 

relation (9) this function can be removed from the integrand 
of the convolution integral. The superposition of the  

correlated speckle fields of both exposures yields, in the 
plane of recording the image of the matted screen 2, the 
following distribution of the illumination: 
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which describes the speckle structure modulated by 
interference fringes of the interference pattern that, in fact, is 
the lateral shear interferogram in the fringes of infinite width 
and characterizes the axial wave aberrations of the lens L

1
. A 

shift of the filtering hole along the direction of the shift of the 
matted screen 2 enables controlling the lens L

1
 over the field.5 

As follows from expression (10) the size of the speckle in 
the plane of interference pattern recording is determined by 
the width of the function F(x

5
, y

5
)⊗P
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). If the 

diameter of the filtering diaphragm P
2 
(see Fig. 1b) is greater 

than the existence domain size of the function  
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), then the interference pattern modulates 

the objective speckle structure, and the size of a speckle 
λf
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 is determined by the width of the function 

F(x
5
, y

5
). As a result one can improve the sensitivity of a 

lateral shear interferometer by reducing the diameter of a 
laser beam in the plane of the matted screen 1 (see Fig. 1a) 
since in this case the shift of the matted screen 2 can be 
increased. It should be noted, however, that in this case the 
size of an objective speckle in the plane of image recording 
of the matted screen 2 (see Fig. 1b) increases that leads to a 
decrease of the interference pattern contrast,10 because the 
period of the interference fringes becomes comparable with 
the size of a speckle. On the other hand, a reduction of the 
objective speckle size in the plane of the matted screen 2 
(see Fig. 1a) increases the contrast of the interference 
pattern in the plane5 of its recording but decreases the 
sensitivity of the lateral shear interferometer. 

As shown in Ref. 5, for spatial filtration to be 
performed on the optical axis in the plane of the image of 
the matted screen 2 one needs to record the interference 
pattern localized in the plane of the hologram. 

In the experiment the double–exposure Fourier 
holograms of the matted screen were recorded on photographic 
plates of the type Mikrat–VRL using an LG–44 He–Ne laser 
at the wavelength 0.63 μm whose radiation was focused with 
an objective of 250–mm focal length onto the matted glass 
screen for forming a coherent diffusely scattered illumination 
field. As an example Fig. 2 shows interferograms obtained 
when performing spatial filtering in the plane of the hologram 
by reconstructing a hologram with a small aperture ( ≈ 2 mm) 
laser beam. The interference pattern shown in Fig. 2a 
characterizes the spherical aberration of the lens L

1
 with 

f
1
 = 120 mm and its pupil diameter d

1
 = 50 mm with post 

focal defocusing, the interference pattern being reconstructed 
at a point on the optical axis. Using this lens under control 
the double–exposure recording of a hologram was performed 
for l

1
 = 55 mm, l

2
 = 300 mm, and L = 145 mm. In the 

channel forming the reference wave the laser beam was first 
expanded with a collimator and then transformed with an 
objective into a diverging quasispherical reference beam with 
the radius of curvature r = 402 mm in the plane of the 
photographic plate. Prior to making the second exposure 
recording the matted screen 2 (see Fig. 1a) was shifted 
perpendicularly to the optical axis by an amount 
a = (0.15 ± 0.002) mm and the slope angle of the reference 
beam was changed by an amount Δθ = 2′ and 20″ ± 10″. 
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FIG. 2. Lateral shear interferograms recorded when 
performing spatial filtering in the plane of the hologram 
on the optical axis (a) and off the optical axis (b). 

 

The interference pattern shown in Fig. 2b, 
characterizes the combination of axial (see Fig. 2a) and 
off�axis wave aberrations of the lens under control. This 
interference pattern is recorded when making spatial 
filtering at 26–mm distance from the optical axis at a point 
on the axis of the shift of the matted screen prior to the 
second exposure. 

Thus, it follows from the above theoretical and 
experimental results that holographic lateral shear 
interferograms enabling the control of converging lenses and 
objectives can be formed in diffusely scattered fields using a 
double�exposure recording of a lens Fourier hologram of a  

matted screen illuminated by a coherent diffusely scattered 
light. Such a technique seems to be applicable to control 
lenses and objectives of large aperture and short focal 
length, when, owing to the possibility of increasing the 
lateral shift, no high sensitivity in the differential 
interferometry is required. 
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