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Elements of the theory of angular

momentum in the Rayleigh—Gans—Debye (RGD)

approximation are used to derive an expansion of the phase function in Legendre polynomials for a single
spherical particle and polydisperse spherical and randomly oriented spheroidal particles. The numerical
calculations are then compared with rigorous results of the T-matrix method.

Introduction

Expansion of the elements of the scattering matrix
into generalized spherical functions has been an
efficient tool for solving single and multiple scattering
problems.!:2 If the expansion coefficients are known,
then the elements of the scattering matrix can be
estimated for a large set of scattering angles,3 while the
scattered fluxes are estimated for a large set of
arbitrary solid angles? for different polarizations of the
incident radiation with minimum computational
expense.

Presently, the possibility of estimating these
coefficients is limited to cases in which the rigorous
theory can be applied, namely, nonspherical particles of
even regular shapes.> This limitation bears on particle
size and particle shape parameters.

The goal of the present paper is to fill this gap for
optically "soft" particles whose properties satisfy the
premises of the Rayleigh—Gans—Debye (RGD) theory,6
and to derive the expansion coefficients of the
scattering phase function for ensembles of spherical and
randomly oriented spheroidal particles.

1. The Rayleigh—Gans—Debye
approximation. Shape factor

Upon solution of the integral wave equation, the
amplitude of the scattered wave in the far zone
(kR >>1) can be represented as’

eikR
EX(r) = - 7= Alng, ny); ¢

k3
Alng, ny) = an j {ng x [ng x E(r')]} x
v
x [(m2(r') — 1] ¢ s qy, ()
where k = 21/A is the wave number of the surrounding
medium; m, is the relative refractive index of the
particle; A is the wavelength of the incident radiation;
R is distance to the observation point; n; = (6;, ¢;) and
ng = (0, ) are direction (unit) vectors of propagation
of the incident and scattered radiation, respectively;
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E(r') is the time-independent electric field vector inside
a particle, where the factor ei® is suppressed for
convenience. This expression is an exact integral
expression for Es(r) in terms of E(r') inside a particle.

The form of the approximation of internal field of
a particle is determined by approach taken. The
Rayleigh—Gans—Debye theory is one such
approximation, with the incident field wused to
approximate the internal one: E(r') = e; ¢/™" (here e;
is the unit polarization vector of the incident plane
wave). In this case, equation (2) simplifies to

k3
A(n& ni) = E[{ns X [ng x €;]} %

X J [m2(r") — 1] o thst dv, (3)
17
where kg = k(n; — ng).

The RGD approximation is applicable provided

that6
O, — 10 <<1, 2kr Om, — 10 <<1, (4)

where 7 is particle size.

To describe the electromagnetic wave scattered by
a homogeneous spherical particle and propagating along
the z axis, we use a right-handed coordinate system
with origin inside a scatterer.

Formula (3) expresses in matrix form the
amplitude scattering matrix®:

s o
5 KR Do sy OO, O

where S11(8,) = (m? — 1) f(8,); Sy(8;) = (m? — 1) f(8,) x
x cos(By), B is the scattering angle, Eq and E; are the
coordinates of the electric field vector in a basis with
the basis vectors parallel and perpendicular to the
scattering plane;

3 .
f(8y) = f—n j ekt Q. (6)
\%

For homogeneous particles of some shapes, shape
factors (6) are known, have an explicit form, and are
given in Ref. 8.
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To solve the problem of concern here, we used an
unconventional expression for the shape factor of a
homogeneous spherical particle. Neglecting details of
the derivation, based on the representation of a plane
wave in terms of the Wigner function and use of the
addition theorem,® upon integration of (6) we obtain
the separable equation

(80 = S Ry(kr) dly (8), %
n=0

k3 3 ) . .
Ry(kr) === Qn + D{p(kr) = jy1(kr) jpiq kDY, (8)

where j,(kr) are spherical Bessel functions. The Wigner
functions and Legendre polynomials are related as

P, (cos®) = dy (0).

2. The coefficients of expansion of the
scattering phase function into Legendre
polynomials

In the RGD approximation, the only independent
element of the scattering matrix is the intensity of the
scattered radiation in the case of unpolarized incident
radiation of unit intensity, namely:

Z11(8y) = 1,/2 Om? — 1TF OFB)F [1 + cos?(8)], (9)

and the corresponding scattering phase function is

4TT
Fi1(8y) =7 Z11(8y), (10)
scat
where Cgy, is the scattering coefficient (cross section).
Neglecting details of the derivation, the final
expressions for the expansion coefficients are

Z11(89) = 3 a, P,(cosBy), a1
n=0
4 2 2 0 12
an =73 a, + 3 z [CZO2O Ay, (12)
n'=0n—20
n+m

0 2
G, =0~ 1S 5 Rk Rykr) [l ],

n=0 n'=0h-m0O

m=0,1,2, ... (13)
Two useful properties of the expansion coefficients
arel
Cqc; a
ay = Z::t , ? = <cosB>. (14)

Normalization of the coefficients @, by ag gives
the expansion coefficients of the scattering phase
function (10).
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3. Polydisperse spherical and randomly
oriented spheroidal particles

Formulas of expansion coefficients for polydisperse
spherical particles are analogous to (12) and (13) except
for the requirement of averaging R,(kr)R,(kr) over
particle ensemble.

In the RGD approximation, the randomly oriented
prolate and oblate spheroidal particles can be made
optically equivalent to polydisperse spherical particles
using an appropriate weighting function0:

,—|a4b 1
I:IerS '—72—a2’ as<r<b,
pla, b, ) =[] (15)

ash? 1
BN

where b and a are the vertical and horizontal semi-
diameters; e=\/£2 —1/¢, where € is the shape
parameter which is defined as the ratio of the larger to
the smaller semi-diameter. Thus, the problem of finding
the expansion coefficients for randomly oriented spheroids
essentially reduces to that of determining the expansion
coefficients for polydisperse spherical particles. In the
case of polydisperse, randomly oriented spheroids with
size distribution f(a, b), the weighting function of the
equivalent ensemble of spherical particles has the form
of a convolution!!: f(a, b)P (a, b, 7).

4. Calculation results

The utility of the results obtained in region (4)
can be tested by comparing them with calculations
based on the T-matrix method.!? Figure 1 presents
calculations of the scattering phase function for
randomly oriented spheroids. The shape effect for
equivalent-volume (kr = 10) particles is shown in Fig. 2.
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Fig. 1. Scattering phase functions of randomly oriented
monodisperse oblate spheroids obtained using the T-matrix
method (curve /) and the RGD approximation (curve 2):
ka=60,a/b=3, m =1.01.
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Fig. 2. Scattering phase function of monodisperse randomly
oriented equivalent-volume (kr = 10) oblate spheroids with
€=1.1 (curve 1), € =2 (curve 2), € =5 (curve 3), and € = 10
(curve 4).

Thus, in the applicability region of RGD theory
the obtained results can be used to estimate the
expansion coefficients of the scattering phase function
for the above-mentioned particle ensembles without
limitations on particle size or particle shape parameters.
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