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The processes of transport of arid aerosols under the conditions of developed convection are
studied theoretically. The aerosols are wind-driven into the atmosphere due to release of soil particles
from bare soil. Further, they ascend due to convection and turbulence. The calculated results are
presented for one-dimensional (ignoring convection), two-dimensional, and three-dimensional Large-
Eddy-Simulation models (LES) that reproduce convective structures with the scales = 100 m.

Introduction

As observations show the arid zones are
characterized by an enhanced concentration of arid
aerosols. Under conditions of strong wind and high
temperature, dust storms often arise. During such
storms, the concentration of aerosols is so high that
twilight comes in daytime. The mechanism of
penetration of fine soil particles into the near-ground
air layer is quite thoroughly studied theoretically; it is
connected with the processes of saltation and diffusion
of aerosol.!

To describe the processes of aerosol diffusion in
the atmospheric boundary layer (ABL), in particular,
under convective conditions, numerical models are
usually used. Such models include the semiempiric
equation of diffusion and some closing hypotheses.2:3 In
this case, irregular mesoscale processes in the ABL are
parameterized as turbulent (subgrid). However,
solutions based on this approach do not describe many
important peculiarities of the convective ABL structure.
This conclusion follows both from the observations4>
and theoretical studies.678 In eddy-resolving models, the
processes of penetrative convection, as well as cloud and
precipitation formation are described in the explicit
form with the use of the so-called Large Eddy
Simulation (LES) models, in which eddies with the
scale larger than 100 m are reproduced based on the
nonhydrostatic equations of thermohydrodynamics, and
smaller eddies are parameterized.

The spread of dust particles under conditions of
dry convection in a 2D formulation of the problem
(simulated ensemble consisting of thermics) was studied
in Ref. 9. The mechanism of aerosol income was not
described in detail in Ref. 9 (the turbulent flow of
aerosol near the surface was set in an arbitrary way).

In this paper, the sources of atmospheric aerosol
are the processes of saltation and deflation (wind-
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driven release of aerosol particles from the surface).
Besides, as a basic model, we take the spatial LES
model, 10 rather than the 2D model as in Refs. 7 and 9.

Spatial model of a convective ensemble
To describe a convective ensemble, we, as in
Ref. 10, use the following set of equations of

thermohydrodynamics:
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where ©, U, and V are the potential temperature
averaged along the horizontal and the components of
velocity along the axes x and y; 6, u, v, and w are the
convective deviations of temperature and velocity
components from their average values; Ug and Vg are
the components of the geostrophic wind; [ is the
Coriolis parameter; K is the coefficient of vertical

© 2001 Institute of Atmospheric Optics



528 Atmos. Oceanic Opt. /June—July 2001,/ Vol. 14, Nos. 6=7

turbulent exchange of the subgrid scale; Kt = K /Pr,
Pr is the turbulent Prandtl number in the ABL,;
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is the operator of individual derivative;
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is the operator of horizontal turbulent exchange; A is
the buoyancy parameter; T is analog of pressure; the
averaging operator is defined as

LylLy

Here the vector function is /= (8, u, v, w); L, and L,
are the horizontal boundaries of the domain of solution;
0<x<Ly 0<y<L, Notethat Egs. (6)—(8) describe
the background large-scale flow in the ABL, and
Egs. (1)—(5) model irregular mesoscale convection.

As the boundary conditions along the horizontal,
we take the periodicity conditions traditional for the
given class of problems. It should be noted that
discretization of the ABL area with the dimensions
Ly=L,=10km on a 128 x 128 grid allows realization
of an ensemble involving up to 100 convective
formations of different size and intensity. The
periodicity condition has the meaning of statistical
homogeneity of the processes along the horizontal.
Simultaneously, the problem of boundary conditions
along x and y is solved.

We impose the following conditions on the
equations of the mean flow in the ABL:

U=V=0, ©=0y(z,1t) atz=zy;

00

U=Us, V=Vg S-=yu atz=H, (9)
where z( is the roughness parameter; H is the upper
boundary; ©g(zg, t) describes the diurnal behavior of
temperature near the surface; ygy is the standard
stratification of the free atmosphere. The conditions (9)
for Eqgs. (6)—(8) were realized with the help of the
model of a quasistationary sublayer!! of thickness 4. It
is assumed that convective pulsations within this layer
are small. In this connection, for Egs. (1)—(5) we take
the following conditions:

u=v=w=0; 0=0y(tx, y)atz="n

o, o
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where 6p are random small-amplitude temperature
perturbations. Equations (10) describe radiation
conditions at the upper boundary. They approximately
set the open boundaries for fast gravitational waves
generated in stable layers. The phase velocities C are
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fitted in calculation from analysis of the Brunt—Vaisala
frequency.
As the initial conditions, we take

U=U, V=Vy,0=0) at t =t 1)

where Uy, V), and © are the steady-state solutions of
Egs. (6)—(8) in the absence of convection.

According to the theory of 2D turbulence,!! for
the coefficients of turbulent diffusion we can write

K, =0, Mxdy,[D2 + D2, K, :ayAxAy‘/D% +DZ ,(12)

where Dg=wv,+u, and Dr=u,—v, are the
components of planar deformation; AxAy is the area of
an elementary cell; a, and a, are dimensionless
parameters.

The vertical turbulent exchange is simulated for
mean flows based on the equations of semiempiric
theory of turbulence.? In the ABL, the equations for
the kinetic energy of turbulence b and its dissipation
rate has the form
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where J = (U5 + V%) - is the source of generation

of the turbulent energy; cg, ¢, ¢p, and O are empiric
constants. 2

Equations (13) must meet the following boundary
conditions:

2
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Model of the aerosol spread

To describe spreading of aerosol, we use the
equation

95 0y B =p,,s+ LK (15)
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where S is the aerosol concentration; wy(d) is the
acceleration due to gravity of a spherical particle
having the diameter d; Kg = K/Sm, where Sm is the
Schmidt number.

The surface concentration S is determined from
the equation!!:

ng—5+woS:BS—I’ at z = z, (16)
2
where I is the mass of dancing particles torn away from

the surface due to saltation; P is the rate of their
entrainment into turbulent diffusion.
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The source intensity was calculated according to
the technique proposed in Ref. 1, which studied
processes of saltation and diffusion in the surface wind-
driven sand flow. The process of sequential lifts and
falls of particles in a turbulent flow (saltation) is
described in Ref. 1 based on equations of discontinuity
and conservation of momentum in a two-component
medium. The dynamic characteristics of the surface
layer were calculated based on the assumption that
after being lifted the particle is subject to the forces of
gravity and resistance, and the latter is assumed
proportional to the squared absolute value of the
relative velocity. A parameter distinguishing small
obstacles from sand particles is the ratio of their size to
the Kolmogorov microscale of turbulence.

The critical velocity of the initial release is a
function of the particle size and the friction velocity of
the flow. In the process of transport, large particles fall
onto the surface, whereas small ones become suspended
and migrate due to turbulent pulsations. The criterion
of distinguishing between saltation and diffusion is
formulated in the terms of the Froude number Fr =
= pu2/pggd for aerosol particles, where p; is the

density of particles; u, is the friction velocity. Based on

the equation of conservation of energy, the equation
was obtained! for the mass ' of particles torn from the
unit area in the unit time interval as a function of the
wind velocity at the level zo = 2 m and the particle size
spectrum.

Figure 1 demonstrates the values of I obtained in
Ref. 1 for sand-dust particles with the size of 10—50 pm
versus wind speed. We can see that the critical speed of
sand release depends on the size of sand particles and
ranges from 3 to 5 m/s; at a lower wind speed, I =0
and release does not occur. The rate of gravitational
sedimentation calculated by the Stokes equation
increases as the particle size increases, varying from
0.03 to 0.3 m /s for the considered values of d.
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2

Fig. 1. Mass of particles involved in diffusion as a function of
the wind speed at the level of 2 m for the fractions with
d =10, 20, 30, 40, and 50 um (curves 7, 2, 3, 4, and 5).

The condition (16) is written at the level of
roughness; to use it in the ABL model, we should
reformulate it to the first computational level, which
coincides with the upper boundary of the layer of
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constant flows (LCF) z = h. Toward this end, let us
write the equations of transport while applying usual
simplifications of the LCF theory in the form

oS _d oS
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Integrating Eq. (17) from z; to z and using
Eq. (16), we obtain

K9S =—wys+1,, (18)
0z
where My =BSy — I, Sy is the concentration at z = z.
The sought analytical equation for S(z) can be obtained
from Eq. (18) on the assumption that Kg= agK
(0g =1,/Sm) in terms of the variable ¢ defined by the
equality dz = Kgd¢. Finally, the exact analog of
Eq. (16) takes the form
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S o T BB wpexp gy PO
at z=h, (19)

where ¢, corresponds to the level z=h, and the
dependence ¢(z) is determined through the LCF
parameters based on the accepted system of universal
functions.

Figure 2 shows the horizontal distribution of the
concentration of the fine aerosol with d = 20 pm at the
level of 300 m above the quasistationary sublayer. The
fields of the rates and coefficients of turbulent
exchange were obtained from numerical simulation of
Egs. (1)=(8), in which it is taken that Ug = 10 m/s.
The physical time corresponds to 2 h after the
beginning of deflation.
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Fig. 2. Isolines of the field S in the horizontal cross section at
z =300 m.

It is seen from Fig. 2 that the specific
concentration is characterized by significant spatial
inhomogeneity and varies from 0.09 to 0.27 g/m3, i.e.,
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by three times (the value S averaged over x and y at
this level is 0.14 g /m3). With height, the contrast of
the spatial distribution of aerosol becomes more
pronounced, and the increased values of the
concentration correspond to upwelling flows of warm
air.

The “spotty” structure of the concentration shown
in Fig. 2 is caused by the irregularity of the spatial
distribution of convective cells, as well as by the
peculiarities of vertical transport due to powerful
upwelling motions in thermics, whose speed in this
calculation reaches 3.5 m /s (negative extreme of w is
roughly twice as small). Since wy = 0.07 m /s is much
less than positive w, aerosol particles involved in
convective flows are lifted up almost to the upper
boundary of the mixing layer, thus forming pronounced
zones of increased convection. Downwelling flows along
with the sedimentation processes favor the local
decrease of the aerosol content and partial removal of
aerosol from the atmosphere. The presence of the mean
wind leads to formation of the extended structure of
pulsations of the concentration field. The structure
extended along the x axis can be seen in Fig. 2. These
factors cause complex spatiotemporal dynamics of
aerosol parameters in the convective ABL.

800

600

400

200

0.2 S, g/m3

Fig. 3. Vertical profiles of the mean concentration in 1D
(curve 1), plane zx (curves 2 and 2'), and spatial (curve 3)
problems.

0.1

The concentration profile averaged over the
horizontal is shown in Fig. 3, curve 3. This figure also
shows the distribution S obtained within the framework
of the one-dimensional model, i.e., model ignoring
convection (curve 7). Comparing curves / and 3, we
can see that in the lower layers the difference in the
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concentrations is small, while at z=300m the
convective transport leads to the more than twofold

increase of S, and at the level z=600m — to the
tenfold increase. The diffusion processes, described
based on 1D K-model, are practically confined within
this layer, whereas the effect of convective factors
manifests itself at the heights up to 800—1000 m. The
total mass of particles involved in air flows due to the
purely diffusion mechanism was 42 g,/m? by the given
time, whereas that with allowance made for convective
exchange was 94 g/m2, i.e., 2.2 times as large.

Analyzing the profile 3 in Fig. 3, note the
tendency to formation of a layer with the values of S
varying slightly along the vertical at 300 <z <700 m.
This peculiarity of the convective ABL is confirmed by
the observations,4 according to which the turbidity of
the lower 1-km atmospheric layer increases in clear
summer days. The mixing layer is more pronounced in
curve 2' (Fig. 3), which was obtained within the plane
model with the longitudinal flow about convective
waves. The qualitatively similar results were obtained
in Refs. 6 and 9 when solving similar problem in a 2D
formulation and simplified description of aerosol
interaction with the surface. In a 2D problem with the
cross orientation of waves relative to the wind, the
mixing layer, on the contrary, is smeared and the
profile of S is close to linear (see Fig. 3, curve 2).
Comparison of curves 2 and 2' suggests that to
reproduce correctly the ABL structure based on a 2D
LES-model, it is necessary to set correctly the
direction, along which the processes are assumed
uniform.

Summarizing the above-said, let us note that the
convection in the ABL play a significant part in the
upward transport of sand-soil aerosol to the upper
layers.

The calculations by use of a 3D nonstationary
eddy-resolving model showed good qualitative
agreement with the earlier theoretical results, as well as
with the known meteorological phenomena: turbidity of
the mixing layer in summer days and penetration of
heavy particles up to the altitudes of 1 km.

It is important to note that in the short-term field
observations a significant inhomogeneity may arise in
the spatial distribution of the fields of atmospheric
aerosol, especially, if these observations fall on
different phases of the eddy convective formations. The
zones of convergence and divergence cause the
appearance of the areas with an enhanced aerosol
concentration. In this case, the distribution of a passive
admixture above the surface layer is inadequately
reproduced if using an ordinary diffusion model.

Thus, the maximum in the concentration of
an admixture involved in a circulation cell can several
times exceed its mean value. This circumstance
should be taken into account when interpreting
observations and setting the intervals of time averaging
of the data.



V.A. Shlychkov et al.

Acknowledgments

The work was partially supported by the Russian
Foundation for Basic Research, Grants No. 99-05—
64678 and No. 99-05-64735.

References

1. E.K. Byutner, = Dynamics of Surface Air  Layer
(Gidrometeoizdat, Leningrad, 1978), 157 pp.

2. B.B. Ilyushin and A.F. Kurbatskii, Izv. Ros. Akad. Nauk,
Ser. Fiz. Atmos. Okeana 30, No. 5, 615-622 (1994).

3. V. Lykossov, Berichte aus dem Fachbereit Physic, Alfred
Wegener Institut fir Polar-und Meeresforschung, September
1995, Report 63, 26 pp.

4. M.E. Berlyand, Current Problems in Atmospheric Diffusion
and Pollution (Gidrometeoizdat, Leningrad, 1975), 448 pp.

Vol. 14, Nos. 6=7 /June—July 2001,/ Atmos. Oceanic Opt. 531

5. N.L. Byzova, Pollutant Diffusion in the Atmospheric
Boundary Layer (Gidrometeoizdat, Leningrad, 1974), 191 pp.
6. V.M. Mal'bakhov and P.Yu. Pushistov, Atmos. Oceanic
Opt. 11, No. 8, 785-789 (1998).

7. V.M. Mal'bakhov, Atmos. Oceanic Opt. 13, Nos. 6-7,
613-616 (2000).

8. J.M. Deardorf, Bound. Layer Meteorol. 8, No. 7, 199-211
(1974).

9. P.Yu. Pushistov, V.M. Mal'bakhov, and S.M. Kononenko,
Meteorol. Gidrol., No. 6, 45-53 (1982).

10. V.A. Shlychkov and P.Yu. Pushistov, in: Bull. of the
Novosibirsk Computing Center, Series “Numerical Modeling
in the  Atmospheric, Ocean and Environmental Studies”
(NCC Publisher, Novosibirsk, 2000), Issue 5, pp. 39-45.

11. V.V. Penenko and A.E. Aloyan, Models and Methods for
Environmental Protection Problems (Nauka, Novosibirsk,
1985), 256 pp.



