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in the lower troposphere under convective conditions
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A hydrodynamic-statistical model is proposed that explains qualitatively the presence of quasi-
regular structures in the distribution of an admixture in the atmospheric convective boundary layer.

Introduction

Observations show that in summer fine dust
particles suspended in the atmosphere, as well as
temperature and velocity fields sometimes form
coherent convective structures with the period from one
to several kilometers over arid areas.! This paper is
devoted to theoretical explanation of this phenomenon.
The interaction between convective cells containing an
admixture is studied, and simplified Boussinesq
equations supplemented with the equation for a passive
admixture are used. It is shown that the cells can merge
and break down at interaction. This result allows us to
put forward a hypothesis on the ways of formation of
the statistic structure of an ensemble of convective cells
and to obtain the relatively simple equations for their
spectra.2 Under simplifying assumptions it is shown
that to parametrically take the total effect of small
convective cells into account when modeling an
ensemble of convective cells of the next hierarchical
level, the coefficient of molecular and turbulent
viscosity, heat conductivity, and diffusion should be
multiplied by a constant factor. Thus, the convective
cells of the height Hj coinciding with the thickness of
the convective layer have the maximum spatiotemporal
scale in the proposed theory, and the concentration
fields of the admixture have the horizontal scale
approximately six times larger than Hj, what coincides
with measurements from Ref. 1 at H, = 1 km.

Simplified hydrodynamic model

Let wus introduce the following simplifying
assumptions.

1. Convective cells arise under the effect of two
axisymmetric thermal pulses arranged above one
another.

2. Only interactions between cells situated along
the buoyancy vector (i.e., lying along the same vertical
line) are taken into account. The first two assumptions
allow us to consider the process as axisymmetric.
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3. It is assumed that the vertical dimension of the
cells is larger than the horizontal one, because viscosity
and Archimedes’ force affect propagation of convective
perturbation along the vertical. This assumption allows
us to simplify the Boussinesq equations due to the
theory of the vertical boundary layer.?2

4. Temperature and density of liquid are related by
the following linear law: p = po(1 — k6), where 8 is the
deviation of temperature from its value ® = ©) — 0z in
unperturbed liquid (a = const); p and pq are the liquid
density and its mean value in the unperturbed liquid,;
k = const is the coefficient of linear expansion of liquid
or gas.

5. The convective layer is stratified unstably: o > 0.

6. The background concentration of an admixture
decreases with height according to the linear law:
S=8y-Bzatz<Sy/B, S=0atz2S5)/B.

7. The coefficients of viscosity v, thermal
conductivity, and diffusion are constant and equal to
each other.

With allowance for the above simplifications, the
Boussinesq equations supplemented with the equation
for s (s is the deviation of admixture concentration
from its background value S) take the following form?:
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where ¢ is time, 7 and z are the cylindrical radial and
vertical coordinates (the axis z is directed upward); u
and w are, rtespectively, the radial and vertical
components of velocity, A = kg; g is the acceleration of
gravity.
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Let us set several vertically elongated axisymmetric
thermal pulses as initial conditions for Eqs. (1)—(4):
att=20

4v?

0="">5Ry[fo(2); s=0; w=0, ®))
)\7’0

where Ry = exp[— 72/(273)]; fo(2) is nonzero at several
non-adjoining segments.

Then the 2D Cauchy problem (1)—(5) is reduced
to the 1D one?:
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here Q = Q, Y is buoyancy of the cell (the value
proportional to the heat accumulated in the cell);
n =Jan.

Let us derive the criterion of cell instability to the
effect of perturbations of finite amplitude. To do this,
let us divide ¢ into quite small discrete intervals
t=1xAt, 1=0,1,...,n, in each of which the coefficient
b=2vad of the non-linear term in Eq. (8) can be
considered as constant: b =2vad = b; = const at
At < t < At(i +1). Let us affect the unstable system
with a thermal pulse at the initial time ¢ =0 and
assume that a thermic of the buoyancy Q is formed by
the time ¢ = ¢; = Atld . Besides, let us very weakly affect
the atmosphere with Q; = € <<1 at the time ¢t =¢;. In
this case, at Atld < t < At(i + 1) we have

0 0 92

0_};+2Vbifa_§:\}0_2§7 (10)
instead of Eq. (8) at t = ¢t;, [ = f1(2) + f»(2). Here f; is
the solution of Eq. (10) at t = At@;, [y is the weak
effect at ¢ = ¢;.

Using the fact that Eq. (10) at At@<t <At(G + 1)
is the Burgers equation, let us solve the following
problem instead of Eq. (10):

exp Q(F{ + €F3)

/= ;o Aan
U
bi [ +expO[] (Fy+ &Fy) dz[]
0 [T
where F{ and F satisfy the following conditions:
T s oF  &F
J Fidz = I dez=1,E=VE,F=F1 + Fs.
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The denominator in Eq. (11) reduces to zero, and
the solution loses the sense at

€= —(exp(Qy) + J F1dz)/J Fydz. 12)

Thus, the values of € depend on ¢ and z, but, as
fluctuations can arise in the temperature field at any
moment of time and at any point of the convective
layer, we should take the minimum absolute value of €
from Eq. (12). This value corresponds to the minimum
thermal fluctuation that destroys the thermic. It is

00 [

achieved at J Fydz=0 and J Fy dz = 1. Substituting

these values in Eq. (12), we finally have
€= ¢, = —exp(-01). 13)

Weaker fluctuations do not destroy the thermic.
Just the same equation for € in the solution for two
simultaneous point-like thermal pulses set for o =0,
7o =0 at ¢t =0 is given in Ref. 2. Let us note that the
obtained solutions do not describe the process of the
cell destruction (because the solution is absent in this
case). However, the numerical solution of an analogous
problem under the same conditions but by the
Boussinesq equations without simplifications of the
theory of the vertical boundary layer has shown that
the process of “wave reversal“ initiated by collision of
upward and downward going cells, accompanied by
entrainment of the surrounding air into the cell, and
leading to its quick dissipation corresponds to cell
destruction in the more complete model. Such
dissipation is assumed instant and called cell
destruction in the simplified theory developed here.

Comparison of the theory with calculations by the
model without simplification of the vertical boundary
layer has shown that the life cycle of every cell consists
of two stages: laminar (for microscale pulsations) or
quasi-laminar (for thermics and convective clouds) and
turbulent ones. At the first stage, the cell grows
spontaneously, and at the second stage it breaks down
in the simplified model and dissipates gradually in the
more complete model. This is caused by instability of
convective cells and, finally, determines the probabilistic
properties of the proposed simplified model.

Statistic model of an ensemble
of convective cells

According to Eq. (13) (for details see Ref. 2), we
assume that the following relation is fulfilled for the
probability density of the cell distribution P(Q):

0
M@=wﬂ%—@,JﬂwM=L (14)
On
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However, Eq. (14) is unsuitable for testing. Let us try
to express Q in terms of the parameters that can be
approximately estimated based on the measured data.
To do this, let us use the solution of Eq. (8) obtained
in Ref. 2 without vertical viscosity at ¢ >1 /n:

w=nzR, 8=0zR, s = BzR (15)
at0<z<h and
©w=0,0=0,5s=0 16)

at z<0and z>h=2(0Qv/nm)!/2
It is easily seen that

w,, = 2(Qvn)1/2; 8,, = 2a(Qv /n)1/2;

Sm = 250(Qv /w12 17
H = w,0,, = 4vaQ; E = w,w,, = 4vnQ;
M = w,,s,, = 4vBO; (18)

02 = oAkt /(16v2) = gkAORS / (16v2) = Ra, /16, (19)

where w,,, ©,, and s, are equal to w, 8, and s,
respectively, at z=h and r=0;, AO=0,_, -
—©,-¢=0ah; and Ra, is the Rayleigh number of the
cell with buoyancy Q.

Thus, the simple relation of Q with %, w,,, 8,,, and
H is obtained. This relation allows derivation of the
following equations for the density of distribution of
the convective cells:

P(Y)AY;=2(Y; - X)) exp{~[(Y; - X))* /D; 1"} / D} dY;,
P(H)dH = exp|-(H — H,) /Hy| /HydH,
P(E)IE = expl—(E - E,)) / Eol/ EodE,
P(M)AM = expl—(M — M,,) /Myl MydM,
wherei=1,2,3,4; Yy =h, Yy =w,, Y3=0,,; Yi=s,
D; are the variances of Y;: Dy = hy=2(v,/n)1/2
Dz = wy = 2(V7’l)1/2, D3 = 60 = 2(1/’10; D4 =S50 = 2[3/1();

1/2 1/2 1/2
X1=hy,=0Q, “hy, Xo=w,= Q) “wy, X3=186, =0, B;
Xs=s,=0Y %5 Hy=4va, H, = Q,Hy: Eg = 4v(aA)1/2,

E, = OuEg; My = 4vB, M, = Q,Sp.
Averaging over the ensemble

x= J Y; P(Y)AY, Fj= J F; P(F)AF;, j=1,2,3, (20)
X; F,

we obtain 7]- = hOi(QE/Q + 172 /2), I_*“j = Foi(Q, + 1),
where /1=, =@, [3= 8, [4=Sm: for = ho, fo2 =,
fos = 80, fos = so; F1=H, Fy=E, F3=M, Fy; = Hy,

Foy = Eg, Fo3 = M.
It is seen therefrom that Q,, can be determined in
terms of the mean values and their variances:

Qm+ 1 =f_7j/F0]‘; Qm+n1/2/2=(yi/Di)2- (21)

It is obvious that I_:]- is proportional to the
convective fluxes of heat and momentum through the
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upper boundary of the convective cell into the
surrounding atmosphere. Upon accepting any hypothesis
on the horizontal distribution of cells and averaging
over the horizontal, we obtain

1%1 =ca(Q,, + 1), % =cn(Q,, + 1), 1’\\‘4 =cB(Q,, + 1), (22)

where ¢ = 4vC, C is inversely proportional to the mean
distance between cells (C = 0.7 at horizontal distance
between cells [ = 21h).

In the case that convective perturbation arises
not in the rest atmosphere but inside a larger
convective cell, one should take ay = 00, ,/0z instead of
o = dO/dz, where O is temperature inside this larger
cell. (We use the subscript 2 for the distribution of the
convective ensemble of the second hierarchical level).

Let us study now the behavior of several interacting
cells of the second hierarchical level situated above
each other. The fluxes of heat and momentum due to
micro-scale convection in this ensemble are parameterized
as follows:

N N N
H = ¢400,/0z; E = ¢,0w,/0z; M = ¢40sy/0z; (23)

A S

ou = ¢100, /0x; o = c10wy /0x; su = c10sy/0x, (24)

where ¢y = 4Cv(Q,, + 1).

Equations (23) are obtained without involving any
additional hypotheses. Since this model ignores the side
interaction between the cells, the correct values of
horizontal heat and momentum fluxes can hardly be
calculated with it. That is why we accept Eq. (24) as a
hypothesis complementing those we accepted when
stating the problem and developing the statistical
model. The form of Eq. (24) is similar to that of
Eq. (23). In this case, the ensemble of the interacting
cells of the second hierarchical level situated above
each other is described by equations similar to
Egs. (1)—(4) but with u, w, 0, s, v, and a replaced
with Uy, Wy, 62, S9, V2:4CV(Qm+ 1) + v, and Ay,
where 0y determines the temperature stratification with
allowance made for the mean effect of convection of the
first hierarchical level. The equations of the type (23)
and (24) and the conclusions following from them are
valid for all hierarchical levels. Thus,

Wit
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where Ni =0qa; + 1/(11'; L= 2[C(Qm + 1)]1/2.

Let us now determine Q,, Unfortunately,
convective atmospheric turbulence of the first
hierarchical level is indistinguishable from dynamic
turbulence. So let us consider the experimental data3 on
convection of water in a wide pan heated from below
by water heated up to 100°C. Heating was performed in
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such a way that the heat inflow from below was equal
to its outflow through top and sides. When the effect
of bottom and sides on convection was minimum, the
mean speed of very small suspended particles was equal
to 1.8 cm[S!, and the variance was 20% of this speed.

Assuming D,/w = 0.2 and substituting this value into
Eq. (21), we obtain 6,, = 25. Assuming v = 1072 cm? (51,
=1°C !, and A = gk =3 cm ! (°C)~!, we have

w=(20,W!/2(aA)1/4=1.8 cm 57!, what coincides
with measurements from Ref. 3. Finally, assuming that
the height of the cells of the last hierarchical level
coincides with the height of the mixing layer Hj, we
obtain [ =2mH, of 6km at Hp=1km, what is
confirmed by measurements from Ref. 1. It is also easy
to show that the mean lifetime of a cell increases as the
hierarchical level of the convective ensemble increases.

Conclusion

The theoretical results show that a convective
ensemble consists of cells having significantly different
size. According to Eq. (21), the linear dimensions of
convective cells of the first hierarchical level are
approximately 10 cm. They form cells of the second
hierarchical level, whose linear dimensions, according
to Eq. (25), are larger by approximately one order of
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magnitude. This rule proves to be valid for cells of the
next hierarchical levels.

According to the theory as well as the data of
observations, atmospheric convection evolves as follows.
First, a convective ensemble consisting of centimeter
and decimeter cells is formed over the surface heated by
the Sun. This ensemble is often seen over ploughed
fields or asphalt as a haze. As the lower layer is heated,
cells of the next hierarchical level arise. The measured
results from Ref. 1 have shown that under convective
conditions the fields of submicron aerosol particles over
arid areas follows, to some degree, the structure of the
ensemble of larger and regular convective cells, what is
confirmed by this model.
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