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We present a complex of models of mesoscale transport of impurities including the 
deterministic model in terms of Euler formulation and the deterministic-stochastic model formulated 
in the frameworks of Lagrange approach. Some results of comparative experiments on modeling the 
impurity transport within the regions having complicated geometry are presented in the paper. 

 

Introduction 

Investigations into the development of 
mathematical models and techniques for describing 
the transport, diffusion, and turbulent exchange of 
impurities in gaseous and aerosol states have been 
actively carried out since the beginning of XX 
century. By now, considerable experience has been 
accumulated in using deterministic and stochastic 
models for diagnostics and forecast of air quality 
changes due to natural and anthropogenic effects. 
Quite wide reviews of principal approaches to the 
solution of this class of problems are given in 
Refs. 1–3 and publications cited therein. These 
approaches can be conventionally categorized in 
accordance with the models used: 1) models of Euler 
type, where equations of advection–diffusion type 
are integrated over spatiotemporal grids of a preset 
structure and 2) models of Lagrange type, where 
advection and diffusion submotions of impurity 
particles are calculated in different ways on some 
gridless structures, evolutionary changeable in space 
and time depending on the behavior of the carrier 
medium. 

Note, that these approaches are not alternative. 
They differ in system organization of algorithms and, 
actually, complement each other. Each of them has 
its own advantages and disadvantages and fields of 
application. Therefore, hybrid systems are of interest, 
which combine the most important advantages of 
both approaches. A system of such a type is being 
developed at the Institute of Computational 
Mathematics and Mathematical Geophysics SB RAS. 
It is based on variational principles with the use of 
direct and conjugate problem and methods of the 
sensitivity theory for deterministic and deterministic-
stochastic models of transport and transformation of 
impurities.4–6 This work presents one of its 
modifications for the solution of 4D mesoscale 
impurity transport problems in the forward modeling 
mode. Its key elements are deterministic model in 
terms of Euler and deterministic-stochastic model of 

Lagrange type. To calculate parameters of 
hydrodynamic background of the atmosphere as a 
carrier medium a non-hydrostatic mesoscale model of 
atmospheric dynamics is used in the regions of a 
complex terrain.7,8 

The analysis of validity and comparison of two 
models were based on the solution of the problem of 
passive impurity emission. 

1. Problem statement 

Thus, in this paper we consider a model of a 
passive impurity transport. It is described by the 
following equation7: 
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where c(x, t) is the impurity concentration, t  is the 
time, x = (x, y, z) are the Cartesian coordinates; 
u = (u, v, w) is the velocity of air mass, wc is the rate 
of impurity sedimentation, νc is the turbulence factor, 
βc characterizes the interaction of the impurity with 
an underlying surface; f and f0 are the source 
functions; δ(x, y) is the function describing the 
relief, c0(x) is the field of the initial impurity 
concentration. 

The input parameters of the problem (1) and (2) 
are meteoparameters (vector of wind velocity, 
turbulence factor, etc.) calculated by means of 
mesoscale non-hydrostatic model of atmosphere 
dynamics7,8:  
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Here ϑ′ and p′ are the deviations of the potential 
temperature and air pressure from their reference 
values; ρ = ρ(z) is the preset function of air density; 
l is the Coriolis parameter; S and λ are the 
stratification and buoyancy parameters. The 
functional Δ

α
 (α = u, v, w, ϑ, c) has the form  

 ,x y z
x x y y z z

α α α α

∂ ∂ ∂ ∂ ∂ ∂
Δ = μ + μ + μ

∂ ∂ ∂ ∂ ∂ ∂
  

where μ
αx, μαy, μαz are the coefficients of turbulent 

diffusion  along x, y, and z coordinates, respectively. 
 The boundary conditions for Eq. (3) are 
formulated as follows. Homogeneous Neumann 
conditions are set on the side boundaries of the 
domain; damping of disturbances of meteoparameters 
is assumed at the top boundary. The influence of 
orographical and thermal inhomogeneities of 
underlying surface is accounted in the thermal 
balance equation on the surface and in the edge 
conditions on the calculated bottom level of the 
model, which coincides with the upper boundary of 
the surface layer. Application of the surface-layer 
theory results in the conditions of the third kind. 
Thus, equations of the atmospheric dynamics and 
transport model (1) and (2) are integrated within the 
domain  

 Dt = D[0, T],  

where  

 = ≤ ≤ ≤ ≤ δ + ≤ ≤{0 ,0 , ( , ) },D x X y Y x y h z H  0 t T≤ ≤   

is the time slice, and h is the height of the surface 
layer. Ideas of the method of dummy domains are 
used to account for the relief. References 7 and 8 
describe model (3) in a more detail. The problem of 
impurity transport (1), (2) is solved using the wind 
velocity fields obtained. 

2. Models of atmospheric transport  
of impurities  

To solve thus stated problem (1) and (2), two 
3D models were used: deterministic model in Euler7,8 
formulation and deterministic-stochastic one in terms 
of Lagrange approach.4–6 The gridless structure of the 
Lagrange model is referred to the grid structure in 
Euler models, using for forming hydrodynamic 
processes in a carrier medium. 

2.1. Scheme of implementation  
of the Euler impurity transport model  

Since the impurity concentration cannot be 
negative in a physical sense, finite-difference schemes 
having monotonicity property are of great importance 
in implementations of numerical models based on the 
transport equation with turbulent diffusion. In this 
study, a numerical algorithm for the 4D impurity 
transport model (1), (2) is constructed by means of 
approximation of the integral identity within the 
variational formulation of the model. Here analytical 
solutions of the local conjugate problems within the 
limits of three-point patterns for each of the 
coordinate directions9 are used as the weighting 
coefficients. The variational principle was used along 
with the split method: the initial many-dimensional 
problem at each time step was approximated by an 
array  of sequentially  solved  one-dimensional tasks. 
 To construct discrete approximations, let us 

introduce the grid domain h
tD  into Dt as the 

Cartesian product of one-dimensional grids along 
t, x, y, and z. In approximating, the functions 
u, v, w, μcx, μcy, and νc we assumed these functions 
to be step-wise constant within the grid cells  
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c
;w w w c  is an arbitrary sufficiently smooth 

function; the superscript h marks the analogs of the 
corresponding expressions.  

Transform Eq. (4) with the partial integration 

operations choosing the function c
∗  in the form of 

product of solutions of one-dimensional conjugate 
tasks defined on the family of cells of the grid 

domain ,htD  like in Ref. 9: 
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totality of fundamental solutions of one-dimensional 
equations within the cells of the grid domain along 
the coordinate curves: 
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Using the obtained functions c∗ , fulfill all the 

integration operations in Eq. (4) and time 
quantization. Finally, calculate the derivatives 

( , ) 0h j j j
imk imk imkI c c c

τ ∗ ∗
∂ ∂ =  for all j, i, m, and k, 

enumerating h

tD  grid nodes, and come to the split 

scheme written in the form of sets of difference 
equations for each coordinate direction, which are 
solved by the sweep method at each fractional time 
step. 

Thus constructed numerical schemes for solving 
the impurity transport equation have properties of 
stability, monotonicity, and transportability. They 
provide nonnegativity of concentrations, fulfillment 
of mass balance relations, and impurity transport 
with the carrier medium flux. 

2.2. Algorithm for impurity transport modeling 
in terms of Lagrange approach 

The second version of numerical model for the 
solution of problem (1), (2) is based on the split 
method and is carried out within the Lagrange 
approach. Describe the algorithm scheme following 
Ref. 4. Actually, the scheme of implementation of 
the Lagrange transport model (LTM) of impurities 
has gridless spatial and time structure. The 
parameters of hydrodynamic background are 
considered to be set on the uniform grid domain 

,h
t tD D⊂  in model (1), (2) they are functions u, μ, 

etc., calculated with the use of model state 
function (3). Therefore, the LTM gridless structure is 

referred to the grid h
tD  of the Euler model of 

atmospheric dynamics, i.e., particles move through 

the grid ,htD  coordinates and all parameters of any 

current point of a particle path are identified in a 
corresponding 4D parallelepiped of the grid domain 

,htD  which is written in the form .

j
c imkD DΔ ≡   

All elements of the hydrodynamic background at 
a current path’s point, necessary for LTM, are 
calculated with interpolation procedures by values of 
corresponding fields in the vertexes of parallelepiped 
accompanied this point. Denote parameters of the 

grid h
tD  by time and spatial variables in numerical 

model (3) as { }, , , , ,

j
E imk
s s x y zΔτ Δ =  while time step in 

LTM by Δt. To construct a numerical modeling 
scheme for paths of individual particles and their 
ensembles, the initial problem is split into three 
physical processes: impurity emission, transport along 
the path of an air mass, and turbulent exchange. 

Advective transport. At the first stage, the 
concentration of impurities in local areas adjacent to 
source points is calculated. At the stage of transport 
deterministic elements of impurity particles paths are 
calculated by the preset field of velocities. Write the 
equation of transport along the air mass paths:  
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which allows calculating the particle position at each 
time step tj+1 at the preset coordinate values 
x
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To construct the numerical scheme we used the 

approximation of the second order of accuracy: 
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The parameters of the scheme are chosen 
adaptive to the process intensity from the 
approximation and stability conditions: 
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where EsΔ  are the parameters of the grid h
tD  within 

the parallelepiped Δ
c

D  accompanied a particle, 
s

Δτ  

is the time step at which the Courant, Friedrichs, 
and Levy11 approximation conditions for the variable 
s are fulfilled within the subdomain ;

c
DΔ  

{ , , }
s

u u v w≡ �  are the values of velocity components; 

sμ  are the values of turbulence factors at the path 

point ( , ),j j
tx  calculated with the field of 

meteorological values at the vertexes of .

c
DΔ  

Derivatives in Eq. (8) are also calculated by 
difference relations within the same parallelepiped.  

Solving the set of equations (8) relative to 

( , , )x y zΔ = Δ Δ Δx , obtain the particle coordinates 
1 2j+

x  at the first splitting stage (6), (7): 

  1 2 1
.

j j j+ +

= + Δx x x   (10) 

Turbulent exchange. Turbulent movement of 
particles at each time step is considered as a 
stochastic process. To construct the calculation 
algorithm for this process we used the method of 
local approximations.12,13 Such an approach allows 
the complex process with inhomogeneous anisotropic 

(5)
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turbulence to be described with the superposition of 
local normal random processes along the coordinate 
directions, the variances scale of which is calculated 
via the turbulence factor.  

At this splitting stage, we have the following 
equation: 

10,x y z j jt t t
t x x y y z z

+

∂ϕ ∂ ∂ϕ ∂ ∂ϕ ∂ ∂ϕ
− μ − μ − μ = ≤ ≤

∂ ∂ ∂ ∂ ∂ ∂ ∂
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The operator of the turbulent exchange model in 
Eq. (11) with variable coefficients within the method 
of local approximations is substituted for a the set of 
operators with piecewise-constant coefficients on the 
principle of “frozen coefficients.”12,13 Here the 
locality is regarded in the space of turbulence factor 
values. At such assumptions, each local-relative-to- sµ  

Eq. (11) has constant coefficients and allows 
variables separation. At every time step 

1j j jt t t t t
+

≤ ≤ = + Δ  the 3D problem is approximated 

to the set of three one-dimensional analytically 
solvable problems.  

Taking this into account as well as the 
correlations between ND probability-density 
functions and Green functions for the set of diffusion 
equations, model the turbulent process of particles 
dispersal as the superposition of Gaussian random 
processes in the neighborhood of path point 
coordinates [Eq. (10)]. For every point we used its 
own coefficient μs. The step value of Δt is chosen 
adaptive to local conditions in the neighborhood of 

point 1 2j+
x  from Eq. (10) according to Eq. (9). In 

ensemble calculating the algorithm parameters are 
adjusted for every particle separately.  

Owing to such modeling, the increments of 
particle coordinates at the stage of turbulent mixing 
are calculated as follows: 

 2 , 2 , 2 ,x x y y z zq t q t q tζ = μ Δ ζ = μ Δ ζ = μ Δ  (12) 

where q are the normally distributed random 
variables with zero mean and unit variance. Final 
equations for the particle coordinates are  

 1 21 , ( , , ).jj
x y z

++ = + ≡ ξ ξ ξx x ξ ξ  (13) 

The path of every particle is calculated till 
“control” time or particle ingress to the receptor 
domain, or running out of the domain.  

Edge conditions (2) in LTM are taken into 
account in the following way. At the bottom and side 
boundaries of the domain ,

c
DΔ  when the particle 

coordinates, calculated by Eqs. (8), (10) and (12), 
(13), turn out to be out of the domain, the particle is 
regarded as ceasing to be and its contribution is 
taken into account when estimating impurity flows 
over the border. At the bottom boundary of the 
domain tD  in the model is specified a mixed edge 

condition to take it into account, specific 

modifications are introduced into the scheme to 
describe particle motion in the surface layer with the 
account for underlying surface irregularities, 
temperature stratification, and the probability of 
surface deposition. The parameterized effective 
bottom boundary of an air mass is determined from 
such a modification. A particle moves until it passes 
through this border. 

3. Numerical experiments 

To compare the calculated results, a series of 
experiments was carried out on simulating the 
transport of a passive impurity in a mountain-and-
valley region based on the models used. The region 
for which the fields of meteoelements were obtained 
by model of atmospheric hydrodynamics (3), which 
are required for calculating impurity transport by 
model (1), (2), is a valley elongated from southwest 
to northeast. The relief causes diurnal variations of 
wind direction and strength in the region. A source 
of passive impurity is located in the valley’s center. 
Modeling was carried out for summer period. 

Three time intervals of 3 hours were chosen for 
the calculations. A situation corresponding to the 
morning circulation development was considered in 
the first experiment. The second one reflects the 
specific of impurity transport in daylight while the 
third one – in the evening. For all scenarios we 
specified the following values of input parameters: 
domain sizes {X = 50 km, Y = 48 km, H = 2.5 km}, 
steps of the grid domain {Δx = Δy = 2000 m, 
Δzk = 100 m}, “basic” time step in the Euler model 
Δτ = 10 s, turbulent diffusion coefficients μcx = μcy 
calculated by the Smagorinskii model, vertical 
coefficient νc = 3 m2/s. An emission source was 
regarded as instantaneous, with the coordinates 
{x = 28 km, y = 24 km, z = 100 m}. The impurity was 
considered as weightless, i.e., wc = 0 m/s. When 
calculating by the model of Lagrange type, action of 
the source was specified an instantaneous emission of 
1000 particles. 

For the chosen calculation domain, summer 
morning circulation is characterized by attenuation of 
katabatic winds developed in nighttime, weak wind 
along the valley, and formation of ascending 
currents. Figure 1 shows the fragment of the vertical 
section of wind field and impurity concentration at 
x = 28 km. 

The results calculated by the Euler model are 
shown in Fig. 1a while Fig. 1b corresponds to the 
Lagrange one. Isolines in Fig. 1a show the impurity 
concentration in fractions of 1000 in 1 hour after the 
emission. Dots in Fig. 1b represent impurity 
particles. As the motion is three-dimensional, then 
the vertical section represents only a part of its 
complicated structure. Movement of impurity 
particles in a circulation cell, formed by air currents 
ascending from the bottom and katabatic winds, is 
well seen in Fig. 1b. 
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Similar sections of fields of impurity 
concentration and wind for daylight and evening time 
in 1 hour after the emission are shown in Figs. 2 and 3. 
Daytime circulation is characterized by ascending 
currents along heated hangs and weak movement of 
air mass in the valley. In the evening, the southeast 
hang begins to cool first, which results in the 
formation of air currents from the cooler hang to the 
warmer one. 

The comparison shows qualitative agreement of 
model results on impurity transport for both models. 

The pollutant cloud moves downwind in all cases.  
More fuzziness of pictures, obtained in Euler 
approach, is explained by relatively wide domain of 
influence of the resolving operator of implicit 
scheme, even under conditions (9). This manifests 
itself in the effects of solution smoothing. To weaken 
them, the resolution of discrete schemes is to be 
enhanced. The work within subgrid scales is possible 
in Lagrange approach under conditions (9) and, 
hence, a detailed presentation of development of the 
processes is obtainable.  
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Fig. 1. Vertical sections of the fields of wind and impurity concentration at x = 28 km in 1 hour after the emission: Euler (a) 
and Lagrange (b) models. Morning circulation.  
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Fig. 2. Similar to Fig. 1, daytime circulation. 
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Fig. 3. Similar to Fig. 1, evening circulation. 

 

Conclusion 

The algorithms have been described for 
implementation of the models of atmospheric 
transport of impurities in Euler and Lagrange terms, 
developed at ISM&MG SB RAS.  

The modifications of numerical impurity transport 
models used are realized as a set of routines, agreed 
on the level of data arrays and adapted for the work 
with models of the fields of hydrometeorological 
elements generation in the atmosphere. 

The analysis of modeling scenarios showed 
similar results from both approaches. As for specificity 
of implementation, algorithms of both models require 
adaptation to the intensity of processes. Work of 
Euler model is traditional for such kind of models, it 
represents general nature of processes within the 
whole domain. The model of Lagrange type is easier 
controllable in tracking of processes intensity. Its 
calculating core is easy adaptable, this allows the 
model to be linked, e.g., in cases when more detailed 
representation of development of processes is required 
in characteristic local zones and regions, adjoining to 
sources of emission and runoff of impurities. 

Thus, both model versions complement each 
other and can be used for forecast and diagnosis 
purposes when studying nature. 
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