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Numerical simulation of airflows in a street canyon
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A steady plane-parallel isothermal turbulent flow of a viscous incompressible liquid above a
surface with large-scale roughness is considered. The numerical model includes the Reynolds
equations with the Boussinesq closing relations. Turbulent parameters are predicted on the basis of
the k—e model of turbulence and Launder—Spalding’s method of wall functions for calculation of
near-wall flows. The problem is solved numerically by the finite-volume method. The influence of
atmospheric parameters on airflows in a street canyon is investigated. Unfavorable meteorology
conditions leading to accumulation of pollutants in urban blocks are revealed.

Introduction

The air quality monitoring system in big cities
should supply information both about peak pollution
levels in a short period of time and about mean
concentrations of atmospheric pollutants. Just the peak
levels are largely connected with the pollution
associated with traffic. The knowledge of the peak
values of pollution and the character of pollution
dispersion is very important, since these values often
exceed the maximum permissible concentrations.

To describe properly the situation formed by the
urban traffic in tunnels, on crossroads, and in urban
street canyons, it is necessary to establish a connection
between sources and receivers of the urban air
pollution. Traffic plays a very important role in the
pollution process. Car exhausts strongly contaminate
the city environment. The transport emissions are
turbulent, and therefore the geometry of a studied
region of pollution is of particular importance. A city
canyon is formed by buildings, between which local
emissions exceed the background. In this situation,
the most important problem is to determine the
distribution of emissions and their relative contribution
to the general pattern. Not only the canyon geometry,
but the meteorological conditions also turn out to be
of principal importance.

The aim of this paper is to study the effect of
the street canyon geometry on the aerodynamic pattern
of the turbulent air motion and the distribution of air
pollutants emitted by the wurban traffic. The
mathematical simulation and numerical solution of
the problem is conducted.

Physical formulation of the problem

Under consideration is the plane-parallel motion
of a viscous incompressible liquid over a surface with
a large-scale roughness. The motion is turbulent and
isothermal. Roughness elements are rectangular
obstacles, whose size is comparable with the size of
the region under study.
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The velocity profile at the left boundary is
described by the following function:
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u3go is the velocity at the height of 300 m. The motion
has a steady character.

Mathematical formulation
of the problem

The mathematical formulation of the problem
includes the Reynolds equations written with the use
of the Boussinesq closing relations':

ou 0v
—_t — =
ox oy

ou _ou_ 10P .9 u
U—+0—=—-——+2—|(v+vp)— |+
ox oy p ox ox ox

+a{(v+v]‘)au}+a{(v+\/7~)av] 2)
ox

0; (1)

B ay] oy
v v 1aP 0 { 60}
U—+0—=-——+—|(v+vp)— |+
ox oy poy ox 02

0 ov 0 ou
+25y|:(V+VT)ay:|+ax|:(v+vT)ay:|. (3)

Here u and v are the projections of the velocity onto
the axes Ox and Oy; v is the kinematic air viscosity;

vy is the turbulent viscosity; P = P + (2pk / 3), where

P is pressure; k is the kinetic energy of turbulence; p
is the air density.

The following boundary conditions for system
of equations (1)—(3) are chosen:

— at the left boundary at x = 0:
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u(oy Z/) = U300 (300 —Ly1) )
(0, y) = 0;
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— at the right boundary at x = Lx “soft”
boundary conditions of flow stabilization are used:
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)

— at the solid lower boundary, the attachment
conditions are used:

u=0=0;

— at the top boundary y = Ly it is believed that
the velocity components are known:

~ ( y —Ly, )0.3
U= U0 \ 300 —Ly, )
v=0.

For determination of turbulent parameters of the
flow, the k—e model of turbulence is used?:
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Here ¢ is the dissipation of the turbulence energy k;
the turbulence energy generation is described by the
equation
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where the constants are ¢; = 1.44, ¢, = 1.92, ¢, = 0.09,
or=1.0, 6, = 1.3.
The boundary conditions for Egs. (4) and (5)

can be written in the following form:
— at the left boundary at x = 0:

k=ky(y), e =20(y);
— at the right boundary at x = Lx:
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To specify the values of turbulent parameters near
the surface of the roughness elements, the method of
wall functions is used.? This choice of the method for
setting the boundary conditions for k and ¢ is caused
by the fact that turbulent characteristics near the
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surface (in the buffer layer and viscous sublayer)
vary markedly. To describe their behavior using the
finite-difference method, a great number of nodes are
needed. At the same time, it is known that in the zone
of developed turbulence the variation of the tangent
velocity as a function of the distance from the surface
is well described by the log law, while the turbulence
energy is described by the linear law. In this
connection, to determine the parameters near walls,
we use the Launder—Spalding’s method of wall
functions,? according to which the velocity component
tangent to the surface can be represented near the
surface as

T
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where ¥ = 0.42; E =9.0; 1, is the surface friction.
The kinetic energy of turbulence k near the surface
(in the near-wall cell of a difference grid) is
determined from Eq. (4) with the use of the following
equations for generation and dissipation of the
turbulence energy:
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where n is the distance from the streamline surface.

The pollutant concentration field can be
determined from solution of the pollutant transport
equation having the following form:

owC) , 0@wC) _ o |(v vy oC|,
ox oy ox |\ Sc  Scr )ox

+a{[v+w]ac}+5. )
oy |\ Sc  Scr ) oy

Here C is the pollutant concentration; Sc is the Schmidt
number; Scr is the turbulent Schmidt number; S is the
source term. This differential equation was integrated
with the zero boundary condition for the pollution

concentration at the left boundary and simple
gradient relations at the other boundaries.

Solution

The problem formulated is solved numerically on
a uniform grid. The differential equations are quantized
by the finite-volume method,® and the convective terms
of the transport equations are approximated using the
Van Leer Monotonized Linear Upwind (MLU)
scheme.® The computational area is formed by a fixed
number of nonoverlapping finite volumes in such a way
that every node of the computational grid is contained
in one volume. After this division of the computational
area, the differential equations are integrated over
each finite volume. The integrals are calculated with
the use of piecewise-linear profiles, which describe the
variable change between nodes.” As a result of such
integration, we get the discrete analog of the
differential equations, which includes the values of
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the variable at several neighboring nodes. For its
solution, the method of fictitious areas was used. The
essence of this method is that the values of vector
and scalar parameters in the obstacle region are zero
and diffusion is absent in fictitious finite volumes.

The values of the wind velocity components are
determined at the edges of finite volumes, while the
characteristics are determined at their centers. For
calculation of the flow field, the Patankar—Spalding’s
SIMPLE procedure® was used. This procedure involves
the following operations:

1. Setting initial approximations for all dependent
variables.

2. Solving the equations of momentum variation
to determine tentative values of the longitudinal and
cross velocity components.

3. Solving the Poisson equation for pressure
correction.

4. Determining the new pressure field.

5. Correcting the velocities.

6. Solving the discrete analogs for the turbulent
characteristics and the concentration.

7. Taking the obtained values of the dependent
variables as initial ones and repeating all the
operation starting from the second one.

Results and discussion

To determine the character of the air motion and
the distribution of the pollution concentration in the
street canyon, as well as to find the dependence of the
concentration on the canyon geometry, a series of
computations was carried out. The computations were
performed on a 81x81 grid. Two pollution sources of
constant intensity were located near the surface (y = 0)
1 m far from the vertical side walls of the canyon.
Figures 1—5 depict the results of the computation, as
well as the vector fields and concentrations
reconstructed from them. The air speed was 3m/s,
and the pollution emission intensity was constant.
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Fig. 1. Vector field of wind velocity and pollution
distribution in the street canyon. Ly, = Ly, = 30 m; Lx, —
— Lx; =30 m.
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Fig. 2. The same as in Fig. 1 at Ly, = Ly, = 30 m; Lx, —
— Lxy = 20 m.
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Fig. 3. The same as in Fig. 1 at Ly, = Ly, = 30 m; Lx, —
— Lx; = 50 m.
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Fig. 4. The same as in Fig. 1 at Ly; = Ly, = 40 m; Lx, —
— LX1 = 30 m.
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Fig. 5. The same as in Fig. 1 at Ly; = 20 m; Ly, = 40 m;
Lxy — Lxy = 30 m.

It can be seen from Figs. 1—5 that the presence
of a canyon formed by neighboring buildings affects
the atmospheric air motion over the city. In all
considered cases of the canyon geometry, circulation
motion with pollution removal from the canyon was
observed. The change in the canyon volume affects
the magnitude of the mean concentration, but in all
the cases local peaks of the pollution concentration
were observed near the lee side of the canyon.
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As follows from Figs. 2 and 4, the increase of the
canyon depth or its narrowing leads to some increase
of concentration of pollutants. It is important to note
that the concentration also increases in the case, if
the building on the lee side is lower than the next
one (see Fig. 5).

Conclusion

In this paper, we have described the mathematical
model and the computational method for investigation
of aerodynamics in a street canyon. Parametric
computations have been carried out to reveal the effect
of the canyon depth, width, and shape on air motion
in it and the distribution of pollutants emitted by
continuous point sources located at the canyon bottom.
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