468 Atmos. Oceanic Opt. /May—June 2003/ Vol. 16, Nos. 5—6

V.Ya. Rudyak and S.L. Krasnolutskii

On kinetic theory of diffusion of nanoparticles
in a rarefied gas

V.Ya. Rudyak and S.L. Krasnolutskii

Novosibirsk State Architecture & Construction University

Received January 17, 2003

We propose to describe the diffusion of nanoparticles in a rarefied gas using kinetic theory.
For this purpose, we use the interaction potential between a disperse particle and a carrier gas
molecule we have constructed ourselves. The dependence of the diffusion coefficient on the radius of
a particle and temperature of the carrier gas is studied. The theoretical results are compared with
experimental data in detail. It has been established that the commonly used Cunningham—
Millikan — Davies (CMD) correlation is inapplicable to small particles (less than 10 nm in diameter).
Hence, any measurement method measuring mobility of particles or the diffusion coefficient to
determine the particle size using the CMD correlation leads to a large systematic error (up to 100%
and even more) in the region of small particle size. Furthermore, the CMD correlation is shown to
apply adequately only in a narrow range of near-room temperatures, for which the parameters of this

correlation were determined.

Diffusion of aerosol particles, being an
important factor of their evolution, has been
intensely studied in the second half of the 20th
century. A number of experimental methods
(diffusion batteries, differential analyzers of electric
mobility, etc.) have been developed by now, and
these methods have shown their efficiency in
measurements of, at least, rather large aerosol
particles. In fact, the theoretical basis for most
measuring methods is the Einstein formula for the
diffusion coefficient of Brownian particles

D¢ = kT /ys, ys = 6mnR, 1)

where m and T are the viscosity coefficient of the
carrier medium and its temperature; R is the
characteristic particle radius.

The coefficient of resistance entering the Eq. (1)
corresponds to the Stokes resistance force acting on a
spherical particle in an incompressible fluid. To
extend the applicability of Eq. (1) and make it
applicable to description of diffusion of disperse
particles in a rarefied gas, the experimental
Cunningham — Millikan — Davies (CMD) correlation
is usually used'?:

Dy, = kT /7y,
v =6mR[1 + 1.257Kn + 0.4Knexp(—1.1/Kn)] ™" =
— 6mnR/C, 2

where Kn = [/R is the Knudsen number of a particle
with radius R; [ is the mean free path of carrier gas
molecules.

The correlation (2) is widely used in various
applications. In fact, some methods for measurement
of the size of aerosol particles and their diffusion
coefficients are instrumentally based on the
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correlation (2) (Refs. 3 and 4). Tt is clear that this
correlation should have a rather limited domain of
applicability. This is connected with the facts that,
first, the parameters entering Eq.(2) were
determined in a very narrow temperature range and,
second, it is Dbased on the Stokes hydrodynamic
resistance force. However, for nanoparticles, whose
characteristic  size is about 107°—5-107% m,
hydrodynamic consideration of their interaction with
the carrier medium is incorrect. An alternative
approach is needed. Development of such an
approach based of the Boltzmann kinetic theory and
its testing are just the objectives of this paper.

As shown in Refs. 5 and 6 the dynamics of
particulate matter suspended in an even rarefied gas
is, in the general case, described by a system of
kinetic equations, which include multiparticle
collision integrals. However, to describe ultradisperse
matters suspended in a gas, it is quite possible to use
the system of Boltzmann kinetic equations. The
similarity parameter here is the Knudsen number, and
the condition of applicability of the Boltzmann
kinetic theory has the form Kn >> 1. In particular, at
the atmospheric pressure this range includes
nanoparticles, so the dynamics of nanoaerosols (that
is, aerosols, whose disperse component is presented
by nanoparticles) can be described with the system of
Boltzmann kinetic equations. For this description to
be closed, it is needed to specify the law of
interaction of a nanoparticle with the carrier gas
molecules. In Ref. 7 (see also Ref. 8) it was proposed
to use for this purpose the potential

O(r) = Dy(r) — D3(r), (3)
O{r) = C{[(r — R) " — (r + R)7] —
_ d,’[(i’ _ R)*(i%) _ (7’ + R)f(i%)]}y
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where  Cy = 4ng;jo;, /45V,  Cy = 2me;01/3V;
ay=9/8r, az=3/2r, V is the effective volume per
one molecule of a particle; g; and o; are the
parameters of the Lennard—Jones potential of
interaction of carrier gas molecules with atoms
(molecules) of the particle; 7 is the distance between
the carrier gas molecule and the center of the
particle.

As a result, it can be shown that the diffusion
coefficient of a nanoparticle is described by the
following equation (see, for example, Ref. 9):

3 NIZRMkT
D= E (1,1)* * ) (4)
i’l},lTltR2f2i]'y (T ,Gi]‘/R)

where p=mM,/(m + M), m and M are the mass of
the carrier gas molecule and the mass of the particle;

T = T/ &3 QEJI " are the so-called reduced omega-
integrals.’

The study presented in this paper was aimed at
calculating diffusion of nanoparticles in rarefied gases
using potential (3) and obtaining the experimental
dependence of the mobility on the nanoparticle
diameter in order to reveal the adequacy of using
correlation (2) and the kinetic theory for
interpretation of the experimental data.

For calculation of the omega-integrals with
potential (3), we have developed a computer
program, which was tested using the available
literature data for mixtures of rarefied gases and the
tests made have shown quite good accuracy of the
calculations.

The dependence of the diffusion coefficient on
the particle radius at a fixed temperature
(T = 288 K) is illustrated in Fig. 1. As an example,
we consider here the diffusion of condensation nuclei
in air at atmospheric pressure.

D, em?/s
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Fig. 1. Diffusion coefficient D vs. particle radius R:
calculations with potential (3) (solid line), calculation by
CMD equation (2) (dotted line); calculation by the Einstein
formula (dashed line), and experimental data'® (A).

The diffusion coefficient was obtained using the
kinetic theory [Egs. (3) and (4)]. The experimental
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CMD correlation (2) agrees well with our data in the
most part of the considered range. At large particle
diameters (R > 8-10% m), the agreement between
the calculated and experimental data worsens
(though the discrepancy here turns out to be about
5—10%). This is not surprising, since for quite large
particles the character of their interaction with
molecules becomes more complicated and potential (3)
can be only the first approximation. On the other
hand, in the range of small particles, where the
applicability of the kinetic theory is undoubted, the
discrepancy between the CMD correlation and the
kinetic theory turns out to be significant.

To reveal the adequacy of application of the
kinetic theory (or CMD correlation) in the region of
small particle radii, the measurements of particle size
and diffusion coefficients were carried out.!' To
obtain objective experimental data, the particle
mobility was measured with a differential analyzer of
electric mobility (DAEM), and the particle diameter
was measured using electron microscopy (EM). Then
the diffusion coefficients of the particles used in the
experiment were calculated using the kinetic theory,
and the obtained experimental and theoretical data
were compared.

In the experiment described in Ref. 12 Cu,O
nanoparticles were used. Particles were synthesized
through thermal decomposition of the metalorganic
precursor of copper acetylacetonate. The experimental
investigations were carried out in a vertical laminary
flow-through reactor, which is described thoroughly
in Ref. 12. Nitrogen with the volume concentration
of 99.999% was used as a carrier gas.

The mobility distribution of particles in the size
range of 2—200 nm was measured with a DAEM
consisting of a radioactive ionizer, a classifier,'> and
a condensation particle counter TSI 3027. An ESP
InTox electric filter was used to collect particles on a
carbonated copper grid (SPI). The particle size and
crystal properties were studied with a transmission
electron microscope (Philips CM200 FEG).

The DAEM operating principle is based on
separation of charged particles according to their
mobility. Charged (in our case, CuyO) particles,
moving in the field of electric potentials applied to
DAEM plates, deflect and penetrate through a
narrow slit in the internal plate. The electrical
mobility of particles Z is measured experimentally
and then used to determine the diffusion coefficient
of the particles

D. = ZkT /ne, (5)

where n is the number of elementary charges on a
particle; e is the elementary charge.

The measured mobility is then assigned to the
particle diameter obtained wusing the electron
microscope. Thus, the experimental dependence of
the diffusion coefficient D, on the nanoparticle
diameter can be found. The results obtained are
shown in Fig. 2. In the range of small particle sizes
the diffusion coefficients differ widely.
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Fig. 2. Diffusion coefficient D vs. particle diameter d:
calculations with potential (3) (solid line), calculation by
CMD equation (2) (dashed line), experimental data (e).

To obtain the theoretical dependence, we used
the kinetic theory of rarefied gases. To calculate the
diffusion coefficient of Cu,O particles in N, at the
atmospheric pressure and temperature T = 21°C, it is
necessary to know the constants of the Lennard—
Jones 6—12 potential of interaction of the carrier gas
molecule with the atom (molecule) of the
nanoparticle. For this purpose, we used the following
combination relations: o = \/ciicﬁ and g; = \/siisjj.
For nitrogen molecules ¢;; = 71.4 K and o;; = 3.798 A
(Ref. 13).

The Cu,O potential parameters were determined
using the law of corresponding states. In describing
the interaction of Cu,O molecules by the Lennard—
Jones 6—12 potential, it was assumed that
gi; = 1.92kT,, (T, is the melting point) and

Gy = \3/1.801n (o, is the volume per one solid-phase
molecule at the melting point'¥). For calculation we
used the following reference data for CuyO:
T, =1242°C, p=6.1 g/cm3. As a result, we
obtained g; =2909 K and o; = 4.124 A. Hence,
using the above combination relations we can find
the constants of the potential of interaction between
the nitrogen molecule and the Cu,O molecule: g;; =
455.8 K and o;; = 3.957 A.

The dependence of the diffusion coefficient on
the diameter of a nanoparticle obtained using the
kinetic theory (that is, using Egs. (3) and (4)) is also
shown in Fig. 2 by solid line.

The  discrepancy  between the  diffusion
coefficients is especially large for small particles. The
theoretical curve agrees well with the experimental
data down to the particle size of about 1 nm. As the
particle diameter decreases, the discrepancy between
diffusion coefficient (2) and that calculated Dby
Egs. (3) and (4), as well as the deviation from the
experimental data increase considerably. The detailed
data on the calculated diffusion coefficient are
summarized below.

Here the values of the diffusion coefficients Dy,
were obtained using correlation (2), D — through
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the use of the proposed kinetic theory, D. are the
experimental data. In the range of small radii, CMD
correlation (2) gives strongly overestimated values of
the diffusion coefficient. Thus, for example, for the
particles with the characteristic size of about 2 nm
diffusion coefficient (2) more than twice exceeds both
the experimental (obtained wusing EM for
determination of the particle diameter) and
calculated data.

Dependence of the diffusion coefficient D (m?/s)
on the particle diameter d (nm)

d D, | D. | D
8.94 | 6.701-10°  4.373-10°  6.694-10°
7.54 | 9.385-10"°  6.543-10°  9.044-107°
6.32 | 1.331-107  9.810-10°  1.215-1077
5.84 | 1.557-107  1.202-107  1.397-107
5.35 | 1.853-107  1.470-107  1.601-1077
4.79 | 2.308-107  1.798-107  1.932-1077
4.51 | 2.602-107  2.198-107  2.118-1077
3.87 | 3.528-107  2.689-107  2.678-107
3.33 | 4.758-107  3.299-107  3.418-1077
2.94 | 6.097-107  4.034-107  4.102-1077
2.55 | 8.097-107  4.925-107  5.063-1077

Finally, it should be noted that the diffusion
coefficient of nanoparticles, as in the case of diffusion
of molecules and Brownian particles, significantly
depends on the medium temperature. The temperature
dependence of the diffusion coefficient at atmospheric
pressure for particles with the fixed radius R
(R = 3107% m) is depicted in Fig. 3.

I D, em?/s
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Fig. 3. Temperature dependence of diffusion coefficient D.
Calculations with potential (3) (solid line); calculation by
CMD equation (2) (dotted line); calculation by the Einstein
formula (1) (dashed line), and experimental data'® (A).

Diffusion of condensation nuclei in air at
atmospheric pressure is again considered as an
example. To determine the temperature dependence
of the air viscosity coefficient, tabulated data were
used.

Analysis of Fig. 3 shows that as the temperature
changes from 100 to 1000 K, the diffusion coefficient
of the aerosol particle changes by tens times. On the
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other hand, the Einstein formula gives the diffusion
coefficient only slightly varying with temperature.
Equation (2) has a rather narrow domain of
applicability regarding the temperature variation. It
agrees with our data within the accuracy of 15% only
at the temperature from 100 to 300 K. At high
temperatures CMD equation (2) leads to strongly
underestimated values of the diffusion coefficient and
becomes inapplicable.

Summarizing the above said, we can draw the
following three main conclusions.

First, any method for determination of the
particle diameter d from mobility using CMD
correlation (2):

d = neC/3mmZ, (6)

and, in particular, DAEM and diffusion batteries,
includes a systematic error in determination of the
size of ultradisperse (smaller than 10 nm) particles,
since they assign incorrect value of the particle
diameter to the obtained value of mobility. As was
shown, these errors may exceed 100%. Equations (2)
and (6) work well for a rather large particles, but
cannot be applied to nanoparticles.

The second circumstance to be noted is that the
kinetic theory proposed here rather well describes
diffusion of nanoparticles, including the range of
small radii, where correlation (2) is inapplicable.
Besides, it should be emphasized that the diffusion
coefficient and mobility of nanoparticles in the
general case depend not only on the particle
diameter, but also on the type of the carrier gas and
the material of disperse particles. The kinetic theory
developed here takes this into account through the
parameters of the interaction of carrier gas molecules
with the particles of disperse matter.

Finally, unlike correlation (2), the proposed
kinetic theory can be used to describe diffusion in a
wide temperature range, while experimental CMD
correlation (2) can be applied only in the range of
near-room temperatures, for which its parameters
were determined.
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