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Some results on modeled atmospheric boundary layer (ABL) structure above a thermally 
nonuniform surface (a heat island of limited size) are presented. To calculate the turbulent 
momentum and heat fluxes, the completely explicit algebraic models have been developed using the 
symbolic algebra from the transport equations in the approximation of weak-equilibrium turbulence. 
To provide for closure of the algebraic equations for turbulent fluxes, a three-parameter E – ε –
 <θ2> model of thermally stratified turbulence has been used. A two-dimensional computer test of a 
24-hour ABL evolution shows that the third-order closure turbulence model (in Mellor and Yamada 
terminology) is capable of reconstructing the most important structure features of the ABL above the 
ground with a heat island, including those, which cannot be reconstructed with the k – ε turbulence 
model. The results obtained well agree with the measurements and the numerical results of other 
authors. 

 

Introduction 

The problems of assessing the quality of air in 
urban areas are complicated because of a wide variety 
of spatial and temporal scales, within which the 
corresponding phenomena occur. In particular, two 
most important scales are the city scale of about 
several tens of kilometers (typical city scale), at 
which the primary emission of air pollutants occurs, 
and the mesoscale of about several hundreds of 
kilometers, at which secondary air pollutants are 
formed and spread. Therefore, the spread of 
pollutants strongly depends on the structure of the 
urban boundary layer and its interactions with the 
synoptic current and the surface. This system is 
characterized by strong nonlinearity, and therefore 
numerical models are usually used to study the 
problems of environmental pollution. 

To calculate the mean and turbulent transport 
and chemical transformations of pollutants, it is 
necessary to know, as accurate as possible, the main 
meteorological parameters, such as the wind, 
turbulent momentum, heat, and matter fluxes, 
temperature, pressure, and humidity, which can be 
either interpolated from measurements or calculated 
using mesoscale circulation models (see, for example, 
Ref. 1). 

Ideally, these models should be capable of 
resolving two main scales: the city scale and the 
mesoscale. Since the horizontal dimensions of a region 
are on the order of the mesoscale (100 km), the step of 
the computational grid, minimized in terms of the 
needed computation time, ranges generally from 
several hundreds of meters to several kilometers. This 
means that it is impossible to resolve the structure of 

an urban surface in detail and the effects of urban 
surfaces should be parameterized. 

Here we would like to note two most important 
effects of the urban surface on the structure of the 
airflows above it (see, for example, Ref. 2): 

1. Resistance to the incoming airflow from 
buildings (different pressures across the roughness 
elements). 

2. Differential heating/cooling of the urban 
surfaces, which can give rise to the so-called heat 
island effect. 

The latter effect on the ABL structure is 
considered in this paper in a simplified form for a flat 
surface with the given roughness. As a thermal 
boundary condition, we define the surface 
temperature, modeling the ground heating by the sun 
in the 24-hour evolution cycle. The effect of the 
urban heat island is simulated by defining the 
temperature contrast at a limited part of the surface 
(the boundary conditions are considered in a more 
detail below, in Subsection 2.1). This simplified 
model of the urban heat island is a good test for a 
mesoscale model of the turbulent atmospheric flow 
over the thermally nonuniform surface. 

1. Mesoscale model  
of the atmospheric flow over  

the thermally nonuniform surface  

The investigations on the parameterization of 
turbulence (Reynolds shear stresses) were started in 
1940s (Kolmogorov, Ref. 5). The models of turbulent 
shear stresses were then verified experimentally 
(using the data of measurements, in particular, by 
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comparing with the data obtained by large-eddy 
modeling of turbulence) and applied in various 
engineering problems. In geophysical approximations, 
turbulence closure models of different degree of 
complexity were formulated by Mellor and Yamada 

3,4 
and used for modeling the planetary boundary layer 
with a greater success, than many empirical models.  
 Recently in Ref. 6, the modified 2.5-level 
closure turbulence model was formulated, in which 
some simplifications of the 2.5-level model 

3,4 were 
removed owing to the use of most complete Zeman–
Lumley model 

7 for the correlation of the dynamic Ïij 
and temperature Ïiθ turbulent fields having pressure 
pulsations. In the 2.5-level turbulence model, all 
turbulent fluxes of momentum (Reynolds shear 
stresses) and heat, including the variance of 
turbulent temperature fluctuations <θ2>, are 
calculated from algebraic equations.  

In Refs. 8 and 9, somewhat different, but, as in 
Ref. 7, tensor-invariant models for correlation of Ïij 
and Ïiθ were proposed. These models were used to 
formulate the three-parameter turbulence model in 
this paper. As in Ref. 7, the parameterization of Ïij 
and Ïiθ correlations includes the buoyancy effects, 
while for the “fast" terms the tensor-invariant IP 
model is used.9  

The model of the slow part of the correlation 

has a simple relaxation form: Ï ij

(1)
 ∼  bij/τ (where 

bij = <uiuj> – (2E/3)δij is the anisotropy tensor; 
E = <uiuj>/2 is the kinetic energy of turbulence 
(KET); τ = E/ε is the dynamic temporal scale of 
turbulence; ε is the KET dissipation). In this model, 
the symmetric Sij and asymmetric Ωij parts of the 
mean deformation rate tensor in the "fast" part of the 

Ï ij

(2)
 correlation have identical numerical coefficients 

as in Refs. 8 and 9 and different coefficients in the 
model from Ref. 6. 

The original Mellor–Yamada 2.5-level closure 
model uses simpler parameterizations for the 
correlation between the dynamic and temperature 
fields with the pressure pulsations in the form:  

Ï ij

(1)
 ∼  bij/τ, Ï ij

(2)
 ∼  –ESij, Ï ij

(3)
 = 0 (buoyancy 

contribution); Ïi

θ(1)
 ∼  hi/τθ (where hi = <uiθ> is the 

turbulent heat flux vector, τθ is the temporal scale of 

the turbulent temperature field), Ïi

θ(2)
 = Ïi

θ(3)
 = 0. 

Consequently, the Mellor–Yamada model accounts 

for one fast term (Ï ij

(2)
) and neglects the buoyancy 

effects (terms Ïi

θ(2)
 and Ïi

θ(3)
). Thus, the 

parameterizations of the turbulent momentum and 
heat fluxes, presented in this paper, occupy an 
intermediate position between the "structure-
symmetric" parameterizations of the modified model 

6 
and the Mellor–Yamada parameterizations. 

The modified 2.5-level closure model was tested 
in Ref. 6 with the standard problem of a horizontally 
homogeneous planetary boundary layer. However, 
even this simple problem under conditions of 
unstable stratification requires careful calculation of 
the counter-gradient heat flux in the inversion layer. 
The algebraic parameterization for the calculation of 

the temperature variance <θ2> (used in the 2.5-level 
models) appears to be insufficient for this purpose, 
and it is necessary to solve the transfer equation for 
the temperature variance in order to adequately take 
into account the processes of advection, diffusion, 
and destruction for this parameter. The model of 
turbulent momentum and heat fluxes for 
environmental flows is considered in detail in 
Subsection 1.3. 

1.1. Basic equations 

To model flows in the atmospheric boundary 
layer, the equations for the mean and turbulent 
parameters are needed. The basic equations have the 
form: 

for the mean velocity Ui: 

 
1

2 ;i
ij i jijk k

j i

DU P
g U

Dt x x

∂ ∂= − τ − − − ε Ω
∂ ρ ∂

 (1a) 

for the mean potential temperature Θ: 

 ,j
j

D
h

Dt x

Θ ∂= −
∂

 (1b) 

where 

 ;j
j

D
U

Dt t x

∂ ∂≡ +
∂ ∂

 ;ij i ju uτ ≡ < >  i ih u≡ < θ>. (1c) 

Here ui is the component of turbulent velocity 
fluctuations; gi = (0,0,g) is the acceleration due to 
gravity; P is the mean pressure; ρ is the mean 
density; Ωj is the vector of the angular rate of the 
Earth rotation; τij are the Reynolds shear stresses, 
and hj is the vector of the turbulent heat flux. 

For flows in the planetary boundary layer, some 
approximations can be accepted in the basic 
equations. In Eq. (1a), the rotation term can be 
approximated as  

 c 32 j ij jijk kU f U− ε Ω = ε , (1d) 

where the axes x, y, and z are directed to the east, 
north, and vertically, respectively; fc = 2Ωsinφ is the 
Coriolis parameter with the angular rate of the Earth 
rotation Ω and the latitude φ. The buoyancy effects 
are taken into account in the Boussinesq 
approximation, and for the two-dimensional, on the 
average, flow the system of equations (1a)–(1b) can 
be written in the form  

 0,
x z

U W+ =  (1e) 

 
1

;t x z x zU UU WU P wu fV+ + = − − < > +
ρ

 (1f) 

 ;t x z zV UV WV wv fU+ + = − < > −  (1g) 

 
0

1
;t x z z zW UW WW P ww g+ + = − − < > +βΘ

ρ
 (1h) 

 t x z x zU W u wΘ + Θ + Θ = − < θ > − < θ >. (1i) 

The dependent variables in Eqs. (1a)–(1i) are the 
Reynolds (i.e., time-averaged) velocities U, V, and 
W along the x, y, and z axes, respectively; Θ is the 
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mean deviation of the potential temperature from 
the standard value T0; β is the volume expansion 
coefficient of the air (3.53 ⋅ 10–3 K–1); ρ0 is the mean 
air density, lower-case characters denote turbulent 
fluctuations of the corresponding parameters. 
Turbulent (Reynolds) shear stresses τij and the 
turbulent heat flux vector hj in the system of 
equations (1d)–(1i) call for modeling. The 
completely explicit algebraic models for the Reynolds 
shear stresses and the turbulent heat flux are 
formulated in the following two subsections. 

1.2. Turbulence equations 

1) Equations for the Reynolds shear stresses τij: 

 

,

j i
ij ij ik jk

k k

i j j i ij ij

UD U
D

Dt x x

h h Ï

∂ ∂τ + = − τ + τ + ∂ ∂ 

+β + β − − ε

 

(2a)

 

where 

 
2

;
3

ij i j ij k
j i k

p p
Ï u u pu

x x x

∂ ∂ ∂≡ < > + < > − δ < >
∂ ∂ ∂

 (2b) 

 
2

2 ;
3

ji
ij ij

k k

uu

x x

∂∂ε ≡ ν < > = δ ε
∂ ∂

 ;i igβ ≡ β  (2c) 

 
2

.
3

ij i j ijk k
k

D uu u pu
x

∂  ≡ < > + δ < > ∂  
 (2d) 

Here Ïij is the tensor of the pressure–velocity 
correlation; p is the turbulent fluctuation of pressure; 
ν is the molecular viscosity coefficient; Dij is the 
diffusion term. 

2) The balance equation for the kinetic energy 
of turbulence (KET) E: 

 
1

.
2

i
ii ij i i

j

DE U
D h

Dt x

∂+ = −τ +β − ε
∂

 (2e) 

3) The transfer equation for the turbulent heat 
flux hi: 

 2
Ï ,

h i
i i j ij i i

j j

D U
h D h

Dt x x
θ∂ ∂Θ+ = − − τ + β < θ > −

∂ ∂
 (3a) 

where  

 Ï ;i

i

p

x

θ ∂≡ <θ >
∂

 h
i i j

j

D u u
x

∂= < θ >
∂

; (3b) 

Ïi
θ is the pressure–temperature correlation; h

iD  is the 

diffusion of the heat flux hi. 
4) The transfer equation for the temperature 

variance <θ2>: 

 2 2 2 ,i

i

D
D h

Dt x
θ θ

∂Θ< θ > + = − − ε
∂

 (4a) 

where  

 

2

;

jx
θ

 ∂θε ≡ χ < >  ∂ 
 2

;i
i

D u
x

θ
∂= < θ >
∂

 (4b) 

χ is the molecular thermal diffusivity; Dθ is the 
diffusion of temperature variance; εθ is the dissipation 
rate of temperature variance. 

5) The equation of spectral consumption of KET 
(its dissipation rate) ε: 

 ,

D
D

Dt
ε

ε ε+ = − Ψ
τ

 (5a) 

where  

 

∂ βΨ = ψ + ψ + ψ < θ > +
ε ∂ ε

∂+ψ β < θ >
ε ∂

0 1 2

3

2
;

ij i i
i

j

i
j i

j

b U
u

x

E U
u

x

 

(5b)

 

 ;j
j

D u
x

ε
∂= < ε >
∂

 (5c) 

ψ0, ψ1, and ψ2 are numerical coefficients (determined 
in Subsection 1.3). 

In this study, the terms including the molecular 
viscosity ν  and the molecular thermal diffusivity χ 
are neglected, except for the equations for εij and εθ. 
In addition, the rotation is neglected in the equations 
for second moments. The modeling of third-order 
moments is beyond the scope of this work. As was 
already mentioned, the main task of this study is to 
obtain the parameterizations of turbulent heat and 
momentum fluxes in the approximation of weak-
equilibrium turbulence, 

10 with the use of which the 
modeling of the third-order moments is not necessary. 

1.3. Third-order closure turbulence model  

1.3.1. Model for correlation with pressure 
pulsations  

The correlations with pressure pulsations Ïij and 

Ïi
θ in Eqs. (2a) and (3a) include three different 

contributions caused by: 1) self-actions of the 
turbulence field (tendency to isotropy or "slow" part 
of correlation), 2) interactions between the mean 
velocity shear and turbulence ("fast" part of 
correlation), and 3) interactions between buoyancy 
and turbulence ("fast" part as well): 

 (1) (2) (3)
Ï Ï Ï Ï ,ij ij ij ij= + +  

 (1) (2) (3)
Ï Ï Ï Ï ,i i i i

θ θ θ θ= + +  (6a) 

where 

 (1) 1
1Ï ,ijij c b

−= τ  

 ( )(2)
2 2

4
Ï ,

3
ij ij ijij c ES c Z= − − + Σ  (3)

3Ï ,ijij c B=  

 (1) 1
1Ï ,ii
c h

θ −
θ= τ (2)

2Ï ,
i

ji
j

U
c h

x

θ
θ

∂= −
∂

 

 θ
θ= β < θ >(3) 2

3Ï ;ii
c  (6b) 

 
1

;
2

ji
ij

j i

UU
S

x x

 ∂∂= +  ∂ ∂ 
 

1
;

2

ji
ij

j i

UU
R

x x

 ∂∂= −  ∂ ∂ 
 (6c) 
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2

;
3

ij ijik kj ik kj km mkb S S b b SΣ = + − δ  

 ;ij ik kj ik kjZ R b b R= −  

 
2

3
ij i j j i ij k kB bh b h b h= + − δ , (6d) 

Sij and Rij are the tensors of the mean shear and the 
mean vorticity, respectively. As was already 
mentioned above, for the "fast" part of correlation 

(2)
Ïij  the tensor-invariant IP-model, developed by 

Launder, 

8,9 is used. 

1.3.2. Algebraic models of the Reynolds shear 
stresses and the heat flux vector  

The combination of Eqs. (2a) and (2e) allows us 
to write the equation for the anisotropy tensor bij: 
 

 
4

Ï .
3

ij ij ij ij ij ij ij

D
b D ES Z B

Dt
+ = − − Σ − + −  (7a) 

Equation (7a) can be simplified in the approximation 
of the weak-equilibrium turbulence, which states that 
the turbulence is in the equilibrium with the imposed 
mean parameters. The equilibrium state of turbulence 
can be obtained, if we take that the substantial 
derivative of the anisotropy tensor is zero. Then, in 
the approximation of the weak-equilibrium 
turbulence, it is assumed that the turbulent transfer 
of the anisotropy tensor Dij is negligibly small and, 
once Eq. (6b) for the pressure–velocity correlation 
Ïij is substituted in the right-hand side of Eq. (7a), 
we obtain the algebraic equation for the tensor bij: 

 ( )1 2 3ij ij ij ij ijb E S Z B= −α τ − α τ Σ + + α τ , (8a) 

where 

 2

1

1

41

3

c

c

−α = , 2

2

1

1 c

c

−α = , 3

3

1

1 c

c

−α = . (8b) 

The constants of the model c1, c2, and c3 are 
determined in Subsection 1.4. 

Applying the equation of the weak-equilibrium 
turbulence to the prognostic equation (3a) along with 

Eq. (6b) for the correlation Ï ,i
θ  we obtain the 

algebraic equation for the heat flux vector hi (third-
order closure model in the Mellor–Yamada 
classification): 

 2

4 3

2
,

3
ij j ij ij i

j

A h b E g
x

∂Θ = −τ + δ + τα β δ < θ >  ∂ 
 (9a) 

where 

 5 4 ;
i

ij ij
j

U
A

x

∂= α δ + τα
∂

 (9b) 

 4 2(1 )c θα = − , 1

5
2

c

R

θα =  (9c) 

(R is defined below in Eq. (12b)). 

Note that for the thermally stratified third-order 
closure turbulence the variance of temperature 
fluctuations <θ2> is not parameterized, but is 
determined from the prognostic differential transfer 
equation (4a). Thus, the algebraic equations for the 
turbulent heat and momentum fluxes take the closed 
form when using the three-parameter E – ε – <θ2>-
model of turbulence. 

In the boundary-layer approximation, from the 
algebraic equations (8a) and (9a) for the turbulent 
fluxes <uiuj> and <uiθ>, we can write a system of 
implicit equations for the turbulent momentum and 
heat fluxes: 

 

2

2

2 3

2
4

3 3

2 2 ;

U
u E uw

z

V
vw g w

z

τ ∂< > = − α < > − ∂

∂ − α < > + α β < θ>∂ 

 

(10a)

 

 

2

2

2 3

2
4

3 3

2 2 ;

V
v E vw

z

U
uw g w

z

τ ∂< > = − α < > − ∂

∂ − α < > + α β < θ>∂ 

 

(10b)

 

 

2

2

2 3

2
2

3 3

2 4 ;

U
w E uw

z

V
vw g w

z

τ ∂< > = + α < > + ∂

∂ + α < > + α β < θ>∂ 

 

(10c)

 

 2

2 32 ;
2

U
uw w g u

z

τ ∂< > = − α < > + α τβ < θ>
∂

 (10d) 

 2

2 32 ;
2

V
vw w g v

z

τ ∂< > = − α < > + α τβ < θ>
∂

 (10e) 

 2 ;
V U

uv uw vw
z z

∂ ∂ < > = −τα < > + < > ∂ ∂ 
 (10f) 

 4

5

;
U

u uw w
z z

τ ∂Θ ∂ < θ> = − < > + α < θ> α ∂ ∂ 
 (10g) 

 4

5

;
V

v vw w
z z

τ ∂Θ ∂ < θ> = − < > + α < θ> α ∂ ∂ 
 (10h) 

 2 2

4

5

.w w g
z

τ ∂Θ < θ> = − < > − αβ <θ > α ∂ 
 (10i) 

Equations (10a)–(10i) were solved using 
symbolic algebra. Below we present the equations for 
those turbulent momenta and heat fluxes, which are 
used in the numerical tests for solution of the system 
of equations (1e) – (1i): 

 ( ), , ;M

U V
uw vw K

z z

∂ ∂ < > < > = −  ∂ ∂ 
 (11a) 

 c;Hw K
z

∂Θ< θ> = − +γ
∂

 (11b) 

 M MK E S= τ , H HK E S= τ ; (11c) 
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( )

( )

0 1 2 3

2

4 5 6

1
1

1 ,

M H H

H

S s s G s s G
D

s s s G g
E

= + − +   


<θ >+ + τβ 


  

(11d)

 

 ( )6

5

1 2 1
1 ,

3
H HS s G

D

 
= + α 

 (11e) 

where  

 2 2

c 2 6 6

1 2
1 ( )

3
M HG s G g

D

 γ = + α + α τβ <θ > 
 

 (11f) 

is the counter-gradient term, which is absent in the 
2- and 2.5-order closure models. 

3,4,6 
The parameters GH and GÌ are determined as 

  

 ( )2 ,HG N≡ τ  ( )2 ;MG S≡ τ  (11g) 

 2
,N g

z

∂Θ= β
∂

 
2 2

2
;

U V
S

z z

∂ ∂   ≡ +   ∂ ∂   
 (11h) 

 

2

1 2 3 4

2

5 6

1

;

M H M H H

H M H H

D dG d G d G G d G

d G d G G G

= + + + + +

 + − 

 
(11i)

 

 2

1 2

2
,

3
d = α  0 2

2
,

3
s = α  

 3

2

5

10
,

3
d

α=
α

 3

1

2 5

1
,s

 α=  α α 
 

 3

3 2 2 6

5

2
( );

3
d

α= α α − α
α

 2 2 6,s = α − α  

 
2

3

4

5

11
,

3
d

 α=  α 
 3

3 6

5

s

 α= α  α 
, 

 
3

3

5

5

4
,

3
d

 α=  α 
 4 3 6s = α α , 

 
2

3

6 2 6

5

2
,

3
d

 α= α α  α 
5 6 2

4
,

3
s = α + α  

 3

6

5

;s
α=
α

2

6

1

1
.

C

C

θ

θ

−α =  (11j) 

The variance of the vertical turbulent velocity and 
the horizontal heat fluxes are determined by the 
equations: 

 

( ) ( )22

6 3 6

2

2 6 6

1 2 4
1

3 3

1
1 ;

2

H

M H

w E s G g
D

G s G

< > = + + α α τβ ×


 ×<θ > − α α +  
 

 

(11k)

 

2 2 6 6 6

5

1 2 1
( )

3
H

U
u E s G

D z z

 ∂ ∂Θ< θ> = τ α + α + α + α τ −   α ∂ ∂ 
 

 2 2

6 6 2

1 2
( ) { (1 )

3
M

U
g G

D z

∂− τ α τβ <θ > α + α +
∂

 

 2 2 2

6 2 6 6 2 3 6 2

4 2 4
( ) };

3 3 3
H M H Hs G s G G s G+ α − α + α α − α  (11l) 

2 2 6 6 6

5

1 2 1
( )

3
H

V
v E s G

D z z

 ∂ ∂Θ< θ> = τ α + α + α + α τ −   α ∂ ∂ 
 

 2 2

6 6 2

1 2
( ) { (1 )

3
M

V
g G

D z

∂− τ α τβ <θ > α + α +
∂

 

2 2 2

6 2 6 6 2 3 6 2

4 2 4
( ) }.

3 3 3
H M H Hs G s G G s G+ α − α + α α − α  (11m) 

1.3.3. Three-parameter model 
 of stratified turbulence 

To obtain closed equations for turbulent 
momentum and heat fluxes (11a)–(11m), it is needed 
to determine three parameters of turbulence: E, ε, 
and <θ2>.  

In contrast to the traditional approach to 
modeling of the planetary boundary layer, when the 
parameterization of the form ε ∼  E3/2/Λ (where Λ is 
the linear dimension of the energy-bearing turbulent 
eddies) is used for the KET dissipation rate, it seems 
preferable using another, more universal and common 
approach, in which ε  is determined from the solution 
of the differential transfer equation (5a). Here this 
equation is used in the same form, as in Ref. 15, with 
the same numerical coefficients, whose values have 
been calibrated in the papers by different authors 
(see, for example, Refs. 11–14): 

 1.2,Eσ =  1.2,εσ =  0.6,θσ =  0 3.8,ψ =   

 1 2 2.4,ψ = ψ =  .3 0 3ψ =  

(see Eqs. (12c)–(12e) below). 
In the third-order closure turbulence model, all 

the three parameters of turbulence are determined 
from the closed differential transfer equations. 

The differential transfer equation for 
destructions of temperature field pulsations is more 
difficult for calibration than the equation of KET 
dissipation. In place of this equation, simple 
parameterization of the relaxation form is used:  

 εθ = < θ2
 >/τθ, (12a) 

where the temporal scale of the temperature field 

θτ  is calculated through the ratio of the temporal 

scales of the temperature and dynamic fields: 

 
2

.
2

R
θ

θ

τ <θ > ε= =
τ ε τ

 (12b) 

The assumption that this parameter is constant 
gives the acceptable, in accuracy, results in both 
engineering 

16 and geophysical flows 

14 at R ≅  0.6.  
For the diffusion terms Dii, Dθ, and Dε, simple 

approximations of gradient diffusion are accepted: 

 
2

1

2
ii

i E i

c E E
D

x x

µ ∂ ∂= −  ∂ σ ε ∂ 
, (12c) 
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D

x x

µ
ε

ε

 ∂ ∂ε= −  ∂ σ ε ∂ 
, (12d) 

 
2 2

i i

c E
D

x x

µ
θ

θ

 ∂ ∂ < θ >= −  ∂ σ ε ∂ 
. (12e) 

Closed equations (2e), (4a), and (5a) form a 
three-parameter model of the thermally stratified 
turbulence.  

1.4. Constants of the algebraic models  
for turbulent fluxes 

Since the "standard" models,8,9 used for the 
correlations of the dynamic field of turbulence with 
pressure pulsations, were successfully applied for the 
solution of various problems, the values of numerical 
coefficients in the model equations for these 
correlations have been tested quite well by now. 
They are presented in Ref. 9 as a graphical 
dependence of the form  

 (1 – c2)/c1 = 0.23. (12f) 

For the "relaxation" coefficient in the model of 

the "slow" part (1)
Ïij  of the pressure–velocity 

correlation (6b), it is taken that c1 = 2 (from the 
usually used range from 1.5 to 2.0). For c1 = 2.0, the 
coefficient c2, determined from Eq. (12f), equals 0.54. 
 In selecting the value of the coefficient 3c  in 

the buoyancy terms (c3Bij in Eq. (6b)), it is possible 
to use the solution of simple problems with the 
allowance for the buoyancy effects 

17,18 (c3 = 0.776). 
Here, this coefficient is taken to be equal to 0.8, 
which corresponds to the value determined in Ref. 6 
by the renorm-group method. The values of the 
coefficients in the pressure–temperature correlation 

Ïi

θ  in Eq. (6b) are: c1θ = 3.28 and c2θ = c3θ = 0.5; 

they have been calibrated in modeling various 
turbulent stratified flows both uniform and 
nonuniform. 

11,14 Note that the values of the 
coefficient c1, calculated in Ref. 6 with the use of the 
renorm-group method, appeared to be 2.5. 

At the same time, it should be kept in mind 
that, for example, for the widely used k – ε model of 
turbulence, this method gives the values of the 
constants in the equation ε, which differ markedly 
from the values calibrated against measurements and 
usually used in calculations. 

2. Numerical test 

In the practice of modeling of environmental 
flows, a simple single-parameter K-theory with the 
isotropic turbulent viscosity coefficient (see, for 
example, Ref. 1) or the k–ε model (see, for example, 
Ref. 19), widely applied nowadays mostly due to the 
commercial software developed on the basis of the  
k–ε technology, is used. 

Note that the above models of Reynolds shear 
stresses and the vector of the turbulent scalar flux 
provide for the additional possibilities of studying 

the effect of surface inhomogeneities (thermal and 
mechanical) on the structure of the stratified 
atmospheric flow as compared to the single- and 
two-parameter techniques of turbulence modeling. 
In particular, it becomes possible to study the 
effect of longitudinal turbulent heat diffusion on 
the main characteristics of the flow in the planetary 
boundary layer, such as, e.g., the layer height. 

For the mesoscale turbulence model formulated, 
a simple two-dimensional numerical test was carried 
out. The atmospheric flow over the surface with the 
given roughness and a localized heat spot (model of 
an urban heat island) was modeled. 

2.1. Computational procedure. 
Initial and boundary conditions  

The horizontal dimension of the domain of 
integration is equal to 100 km with the 1-km 
resolution. The vertical resolution is 10 m within 
first 50 m from the surface with the following 
extension of the grid in the vertical direction up to a 
height of 1000 m. Higher, up to a height of 5000 m, 
the grid step was constant. The topography of the 
surface was plane with an urban island in the form of 
a heat spot (10 intervals in the horizontal direction) 
surrounded by rural areas. 

The initial meteorological conditions were 
determined by the specified geostrophic wind 
(velocity of 3 and 5 m/s) in the eastward direction 
and the atmospheric thermal stratification, equal to 
3.5 K/km for the potential temperature. The 
turbulent momentum and heat fluxes on the surface 
were calculated using Monin–Obukhov similarity 
theory for the near-surface layer.20 The ground 
temperature was specified as  

 ( , 0, ) 6sin( /43200),x t tΘ = π  (13) 

where t is the current time, in s. 
This is the only nonstationary boundary 

condition of the problem, which models the 24-hour 
cycle of solar heating of the Earth's surface. The heat 
island was defined as a temperature contrast with 
respect to the surface temperature by the same law 
(13), but with the amplitude increased by 2°. The 
normal derivatives of all the sought functions at the 
transverse boundaries were taken to be zero. The 
sought functions at the vertical boundary meet the 
same boundary condition. 

The basic equations of the model [(1f), (1g), 
(1i), (2e), (4a), and (5a)] are solved by the method 
of alternating directions in combination with the 
sweep method on a shifted difference grid. The 
advective terms of the equations are approximated by 
the second scheme with the counter-flow 
differences.21 The pressure distribution can be 
calculated simultaneously with the calculation of the 
velocity field from the diagnostic equation. However, 
in this study, applying the mesoscale model to the 
flow in ABL, we can assume that the vertical 
component of the wind velocity is much smaller than 
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the horizontal one. Thus, the hydrostatic 
approximation is assumed valid for the calculation of 
the pressure distribution. The vertical wind velocity 
is calculated as a quadrature from the continuity 
equation (1a), and its distribution is determined at 
the end of every computational cycle by integrating 
Eq. (1h) for the vertical velocity. The solution, 
independent of the computational grid, was obtained 
on a 120 × 50 grid. The time step is equal to 1.25 s of 
the real time. 

2.2. Results of numerical simulation 

2.2.1. Test for standard ABL 

In the absence of a heat island, the formulated 
mesoscale model describes a 24-hour cycle of the  
ABL evolution with the given temperature 
distribution (13). The calculated distributions of the 
main characteristics agree with the observations and 
other calculations. As an example, Fig. 1 shows the 
distribution of the vertical heat flux. Curves 1–6 
stand for the calculated profiles from 9:00 to 14:00. 
The calculated profiles are similar to the profiles of 
the vertical heat flux obtained using other numerical 
models.23 The vertical heat flux profiles in Fig. 1 
clearly demonstrate the effect of the entrainment 
processes. It can be seen that a wide zone between 
heights of 0.6 and 1.0zi is affected by the 
entrainment processes, and the algebraic 
parameterization of turbulent fluxes of the third-
order closure reproduces the alternation of the sign of 
the heat flux in the region of inversion as a response 
to cooling due to the entrainment process. 

 

 
Fig. 1. Profiles of the turbulent vertical heat flux <wθ>, 
normalized to surface heat flux <wθ>0: calculated (lines) and 
measured (symbols) in Ashchurch (closed symbols) and 
Minnesota (open symbols) [Ref. 22, Fig. 4.12]. 

2.2.2. Mesoscale flow over a heat island  

This Subsection presents numerically 
calculated results on the mean wind and 

temperature distributions in comparison with the 
calculated data from Ref. 1, in which the effects of 
the urban surface were parameterized. In addition, 
since this third-order closure model of turbulent 
fluxes allows the effect of the longitudinal 
turbulent heat diffusion (first term in the right-
hand side of Eq. (1i)) on the ABL characteristics to 
be followed, these results of the presented test are 
discussed as well. 

Figure 2 shows the vector field of the mean 
horizontal wind and isotachs of the vertical 
component of the mean wind for 12:00 a.m. of the 
diurnal cycle of modeling for the geostrophic wind 
velocity equal to 3 and 5 m/s, respectively. The 
isotachs clearly demonstrate the upward flows at the 
boundaries of the heat island, where there is a sharp 
temperature contrast between the heat island and its 
environment. 

 

 
a 

 
b 

Fig. 2. Vector field and isotachs of the mean horizontal 
wind at 15:00 in the diurnal cycle of modeling for the 
geostrophic wind velocity UG = 3 (a) and 5 m/s (b). 
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Figures 3a and b depict the vertical sections of 
the deviations of the potential temperature (a) and the 
mean wind field (b) calculated in Ref. 1 for 
12:00 a.m. in the diurnal cycle of modeling. These 
calculations employed a single-parameter model of 
turbulence (all turbulent momenta and heat fluxes 
are determined by the gradient Boussinesq model 
with the turbulent viscosity coefficient) and 
parameterization of the main factors of the 
heterogeneous urban surface (head resistance of 
buildings, radiative processes in city canyons). 
Figures 3c and d show the same sections over the 
modeled heat island obtained with the mesoscale 
model, described in this paper, with the neglected 
morphology of the urban surface. In both of  
the cases, the same test for the 2D area (see 
Subsection 2.1 above) and the same initial 
distribution of the potential temperature and the 
geostrophic wind were used. 

The results of both tests cannot be compared 
quantitatively because of different parameterization 
of the effect of the urban heat island and the effects 
of the urban roughness, which significantly change  
 

the structure of the flow directly in the layer of 
obstacles, a part of the urban atmospheric boundary 
layer adjacent to the surface. However, the large-
scale air circulation within the domain of integration 
in both of the numerical tests can be compared 
qualitatively. 

It should be noted, in addition, that the 
verification of one or another parameterization of 
the turbulent exchange processes within urban 
surfaces always present severe difficulties either due 
to the absence of field measurements or due to the 
heterogeneity of urban surfaces, which is always 
very high. The vertical sections of the field of the 
potential temperature are similar.  

In Figs. 3a and c, the dash-and-dot and the 
dashed lines show the height of the boundary layer, 
determined by the lowest level of the model, at 
which KET is lower than 0.01 m2/s2. It can be seen 
that above the city there is a column of heated, 
unstable air, which is shifted by the advection in 
the windward direction. 

The effect of the urban surface on the height of 
the boundary layer is more obvious  in modeling  with 

 

 
 a b 

 

 
 c d 

Fig. 3. Vertical sections of the fields of the potential temperature (c) and the mean horizontal wind (d) at 12:00 a.m. as 
calculated in Ref. 1 (a, b) and in this work (c, d) (UG = 3 m/s). 
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parameterization of the morphology of the urban 
surface due to the effect of the urban roughness. 

The wind velocity (Figs. 3b and d) increases 
over the city and the heat spot, because the vertical 
temperature gradient between the air above the city 
(heat spot) and the air above the city surroundings 
generates the thermal circulation, which can be seen 
from the isotachs of the vertical velocity in Fig. 2. In 
addition, the pressure gradient, caused by higher 
temperatures over the city (heat spot), has here the 
same sign as the advection. Along with the effects of 
friction near the surface, this leads to the lower wind 
values near the urban surface and higher values above 
it. The minimum in the wind velocity downstream 
out of the city (heat spot) arises because the pressure 
gradient and the advection of the synoptic wind have 
the opposite signs in this area. The presence of such  
a "cap" of the warm air above the urban heat  
island was observed, in particular, in laboratory 
measurements 

24 and in numerical investigations. 

14,15 

Figure 4 shows the calculated vertical sections 
of the deviations of the potential temperature and the 
mean horizontal wind in modeling at the geostrophic 
wind velocity UG = 5 m/s. The comparison of 
Fig. 3c and Fig. 4a indicates the decrease in the 
height of the boundary layer with the increase of the 
wind velocity. The same result was also obtained in 
the test carried out in Ref. 1. 

The calculated results shown in Fig. 5 allow 
estimating the effect of the longitudinal turbulent 
heat diffusion, determined by the first term in the 
right-hand side of Eq. (1i), on the boundary layer 
characteristics. It is seen from Fig. 5 that the height 
of the boundary layer (marked by the dashed line) in 
the presence of diffusion is higher than in its absence. 
The longitudinal diffusion transports the heat into 
the column of the heated air above the city (heat 
spot), which increases the KET generation due to the 
fluctuating buoyancy force and favors the increase of 
the PBL height. 

 

    
 a b 

Fig. 4. Calculated vertical sections of the deviations of the potential temperature (a) and the mean horizontal wind (b) at 
12:00 a.m. (UG = 5 m/s). 

   
 a b 
Fig. 5. Vertical sections of the deviations of the potential temperature, calculated taking into account (a) and neglecting (b) 
the longitudinal turbulent heat diffusion at 12:00 a.m. (UG = 5 m/s). 
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Conclusions 

In this paper, we have presented the three-
parameter model of anisotropic turbulent momentum 
and heat fluxes for modeling of atmospheric 
mesoscale flows over a thermally nonuniform surface. 
A simple two-dimensional numerical test of the effect 
of the heat spot on the Earth's surface, simulating 
the urban heat island, on the structure of the 
atmospheric boundary layer has been performed. 

The computer simulations are in a qualitative 
agreement with the results of analogous tests, carried 
out with the mesoscale model, which employs the 
single-parameter model of turbulence with a carefully 
selected linear scale of turbulence and accounts for 
both the thermal and mechanical effects of the urban 
surface on the boundary layer structure. 

The formulated third-order closure model of 
turbulent fluxes allows the effects of turbulent 
transfer to be studied under conditions of both 
thermal and mechanical heterogeneity of the surface. 
In particular, it is shown that the longitudinal 
turbulent heat diffusion favors the increase of the 
boundary layer thickness. The single- and two-
parameter models of the atmospheric boundary layer 
usually neglect the effects of the longitudinal turbulent 
transfer. 
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