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The problem of light scattering by a volume scattering element in the case of a 
focused incident beam has been solved using an expansion of a scattering matrix in 
generalized spherical functions. Some particular cases are considered. The effect of 
incident beam geometry on spatial distribution of scattered radiation (scattering 
phase function) is illustrated. 

 
In theoretical studies in the field of optics of 

dispersed media the assumption that the incident 
radiation represents a plane electromagnetic wave or a 
parallel beam is not always justified. In optical 
experiment one should take into account the geometry1–2 
and structure3–4 of incident radiation. 

The present paper is concerned with scattering of 
focused or divergent beam by a volume scattering element 
and with the effect of the incident beam geometry on the 
amount of radiation scattered at different angles. 

The volume scattering element contains randomly 
oriented particles having a plane of symmetry and/or 
particles and their mirror images in equal proportion with 
random orientation. 

Let the incident radiation be focused or divergent 
beam in the form of a cone whose directrix coincides with 
the Z axis and degree of convergence or divergence is 
determined by an angle (t

0
') between the directrix and 

generatrix of this cone. 
The particles in the volume scattering element are 

assumed to be randomly positioned. For this reason the 
beams scattered by individual particles are incoherent. It 
allows one to apply the principle of additivity of the 
Stokes parameters. The result of interaction between the 
incident beam and the given volume is the sum of the 
results of interaction between each local beam (parallel 
by convention) and this volume. 

On the basis of these assumptions the solution for 
the focused and divergent beam with equal degree of 
divergence or convergence and identical structure 
(intensity and polarization) has the same form. 

Two representations of the electric field strength 
and the corresponding systems of the Stokes parameters 
and scattering matrices are used in this paper. In the CP–
representation the components of the electric field 
strength can be written in the form5 
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where E

1
 and E

2
 are the parallel and perpendicular 

components in the LP–representation6 referred to the 
reference plane. 

The systems of the Stokes parameters for incident 
and scattered radiation in the LP–representation6 are 
defined as 
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while in the CP–representation5  
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where the asterisk denotes complex conjugation and  
T – transposition. 

The transformation of the Stokes parameters IL into IC 
can be written in the form 
 

IC = A IL , (4) 
where  
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1
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The inverse transformation has the form  

IL = A–1
 IC , (6) 

 

where 
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(here the superscript –1 denotes the inverse matrix). 
Let us consider the system of coordinates (Fig. 1) in 

which the directions of scattering and propagation of a local 
beam are specified by the spherical angels (υ, ϕ) and 
(υ′, ϕ′), respectively. 

The transformation of the Stokes parameters of 
incident radiation into the Stokes parameters of scattered 
radiation caused by light scattering by the volume 
scattering element depends on the scattering angle θ and is 
given as5–7 
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where r is the distance to the observation point, IC, L

sc
 and I

i

C, L 

are the Stokes parameters of scattered and incident radiation 
referred to the scattering plane containing the directions of 
propagation of the incident beam and scattered radiation. 

Using Eq. (6), it is possible to derive the relations 
between the scattering matrices of Eq. (8) 
 
ZC(θ) = A ZL(θ) A–1 . (9) 
 

Let us define 
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where 
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F L

11
(θ) is the scattering phase function which satisfies the 

normalization condition 
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For the given volume scattering element the scattering 

matrix in the LP–representation has the form7 
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and in the CP–representation5,8–10 according to Eq. (9) it 
has the form  
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m, n = 2, 0, –0, –2. 

Following Refs. 5 and 8, the elements of the 
scattering matrix given by Eq. (14) are expanded into a 
series in generalized spherical functions11 
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The coefficients of expansion possess the following 
properties of symmetry5: 
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where g 
s
m n and g 

s
m–n  are real numbers. 

The CP–representation has the following advantages 
over the conventional LP–representation: 

1) the existence of expansion (15) for the given 
volume scattering element, and 

2) in the CP–representation the transformation matrix 
of the Stokes parameters for rotation of the reference plane 
through the angle α is diagonal5,10 
 

IC(α) = LC(α) IC(0) , 
 

In(α) = einα In(0) , 
 n = 2, 0, – 0, – 2 , (17) 

 

where the angle is counted off clockwise from the 
direction of propagation. 

The Stokes parameters of a local incident beam 
referred to a meridian plane containing the propagation 
direction can be transformed into the Stokes parameters 
of scattered radiation referred to a meridian plane 
containing the scattering direction in the following way 
(see Fig. 1): 

1) transformation of the Stokes vector of a local 
incident beam from the meridian to scattering plane, 

2) finding of the Stokes vector of scattered 
radiation, 

3) transformation of the Stokes vector from the 
scattering to meridian plane. 
 

 
FIG. 1. 

 

On account of Eqs. (8), (10), (15), and (17), the 
transformation has the form 
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where I i
n and I 

sc
m are the Stokes parameters of a local 

incident beam and scattered radiation, respectively. 
The addition theorem for generalized spherical 

functions11 
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makes it possible to exclude the variables χ, θ, and χ′ from 
formula (18). 

For focused or divergent incident beam propagating in 
directions confined to a conic solid angle Ω′, the Stokes 
parameters of scattered radiation, with allowance for the 
property of additivity, have the form 
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where m = 2, 0, –0, –2 and I 

i(υ′, ϕ′) is the local beam 
intensity. 

An infinitely small quantity12 dΦ = I dσ is 
proportional to the radiant power transported by a pencil of 
rays in directions confined to an element of solid angle dω, 
where dσ = r2dω is an element of area the solid angle dω 
cuts out from the sphere of radius r and I is the radiant 
intensity. 

In the subsequent treatment 
 

Φ = ⌡⌠
Ω

 I r 
2 dω 

 
is the radiant flux propagating within the solid angle Ω. 

The normalization factor in Eq. (20) is a flux of 
incident radiation. It should be noted that according to 
this definition the flux of a parallel beam is zero. In this 
case the limit Ω′ → 0 must be taken in Eq. (20) finally 
resulting in formula (8) (with an accuracy of a factor 
being equal to the incident radiant intensity) and 
coinciding with it for a unit intensity of the incident 
beam. 

By normalizing Eq. (20) with allowance for the 
condition of normalization of the scattering phase 
function given by Eq. (12), after the use of Eqs. (18) and 
(19) and substitution into Eq. (20), we obtain  
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m = 2, 0, – 0, – 2 . (21) 
 

Formula (21) takes into account the geometry 
(divergence or convergence) and structure (intensity and 
polarization) of the incident beam. 

Let us consider some particular cases of formula (21). 
1) Incident beam homogeneous in intensity 

(I 
i(υ′, ϕ′) = I 

i = const) and polarization.  
(a) Nonpolarized beam. In CP–representation5,13 ICi  = 

= (0, 
I 

i

2 , 
I 

i

2 , 0)T. After integration of Eq. (21) over ϕ′, the 

terms of the series with q = 0 remain nonzero, and Eq. (21) 
is reduced to a simple expression 
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where Ps and P 

m
s  are the Legendre polynomials and 

associated Legendre functions.11 
The scattering phase function on account of Eqs. (2) 

and (12) has the form 
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where a 
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 are the coefficients of expansion of 

the scattering phase function (F
11

 = a
1
(13)) in the Legendre 

polynomials.5,9,10 
(b) For either sense of polarization of the incident 

beam, the Stokes vector parameters in the CP–
representation are equal to (0, I 

i, 0, 0)T and (0, 0, I i, 0)T, 
respectively, and those corresponding to Eq. (21) are  
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m = 2, 0, – 0, – 2 . 
 

2. Unpolarized incident beam (I 
i(υ′, ϕ′) = I 

i(υ′)) 
inhomogeneous in intensity. 

Let us expand the function I 
i(υ′) into a series in the 

Legendre polynomials
 
 



290   Atmos. Oceanic Opt.  /May  1993/  Vol. 6,  No. 5 L.E. Paramonov 
 

 

I 
i(υ′) = ∑

s=0

∞

 
 as Ps(cos υ′) . (26) 

 
On account of the formula11,14  
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m = 2, 0, – 0, – 2 . 
 

In formulas (22), (24), (25), and (28) the Stokes 
parameters of scattered radiation are implicit functions of 
ϕ referred to the meridian plane, and their dependence is 
determined by this meridian plane containing the 
direction (υ, ϕ). Table I lists the results of calculation by 
formula (24) for spherical particles with the index of 
refraction m = 1.33 and diffraction parameter ρ = 10 and 
50 for different geometry of the incident beam. 

In Refs. 3–4, using the generalized spherical 
functions the analytical expressions were obtained for the 
radiant flux scattered by a volume scattering element 
within different solid angles in the case of focused or 
divergent incident beam. 

It should be noted that analogous problem for a 
single particle requires that an amplitude matrix (Jones 
matrix) be used,13 since in this case local beams scattered 
by individual particles are coherent and the complex 
amplitudes (Jones matrices) rather than the Stokes 
parameters (light scattering matrices) should be 
summed.13 The exception is the case of a parallel incident 
beam or an arbitrary polarized plane electromagnetic 
wave.3 

The analytical expressions obtained enable one to 
study the effect of the geometry and structure of the 
incident beam. Moreover, the knowledge of the expansion 
coefficients in Eq. (15) (see Refs. 9, 10, 15, and 16) 
makes the subsequent analysis simpler and minimizes the 
volume of calculations. 

 

TABLE I.  
 

υ
0
′, deg 

θ° 0° 1° 5° 10° 
 ρ = 10 

0 64.7883 64.3951 55.6810 35.8752 
10 15.5898 15.6271 16.3738 17.2778 
20 4.6803 4.6763 4.6398 5.0595 
30 4.0137 4.0184 4.0966 4.0485 
40 1.9159 1.9118 1.8364 1.8106 
50 8.8641(–1)* 8.9101(–1) 9.8473(–1) 1.1254 
60 6.7680(–1) 6.7403(–1) 6.1828(–1) 5.4410(–1)
70 2.3923(–1) 2.4108(–1) 2.7974(–1) 3.4629(–1)
80 2.3121(–1) 2.3068(–1) 2.1972(–1) 2.0321(–1)
90 1,5195(–1) 1.5172(–1) 1.4743(–1) 1.4316(–1)
100 6.8309(–2) 6.9105(–2) 8.5518(–2) 1.1246(–1)
110 1.4989(–1) 1.4909(–1) 1.3314(–1) 1.1055(–1)
120 1.2976(–1) 1.3025(–1) 1.4005(–1) 1.5202(–1)
130 1.4838(–1) 1.4857(–1) 1.5342(–1) 1.6951(–1)
140 3.4732(–1) 3.4634(–1) 3.2479(–1) 2.7858(–1)
150 1.8110(–1) 1.8265(–1) 2.1547(–1) 2.7596(–1)
160
170
180

4.4452(–1) 
2.5417(–1) 
2.5432(–1)  

4.4252(–1) 
2.5613(–1) 
2.5207(–1) 

4.0075(–1) 
2.9592(–1) 
2.1134(–1) 

3.2824(–1)
3.5381(–1)
1.9817(–1)

 ρ = 50 

0 1244.47 1115.16 194.655 63.5497 
10 11.4185 10.6874 11.0932 32.9131 
20 7.4857 6.9109 5.2298 4.7707 
30 2.7400 2.6691 2.4212 2.5053 
40 1.3182 1.3262 1.3913 1.3932 
50 5.3715(–1) 5.6772(–1) 6.2692(–1) 6.7099(–1)
60 3.1315(–1) 2.9715(–1) 2.7959(–1) 2.9123(–1)
70 7.9111(–2) 9.1894(–2) 1.2395(–1) 1.3326(–1)
80 9.5849(–2) 8.6848(–2) 6.9054(–2) 6.8797(–2)
90 2.4738(–2) 2.6777(–2) 3.1191(–2) 3.3794(–2)
100 1.5444(–2) 1.7164(–2) 1.9866(–2) 2.1066(–2)
110 5.4005(–3) 9.7217(–3) 2.0476(–2) 2.6723(–2)
120 2.9429(–2) 3.8332(–2) 5.0239(–2) 4.4060(–2)
130 3.6375(–2) 4.2932(–2) 7.6169(–2) 8.9188(–2)
140 2.4655(–1) 2.2934(–1) 2.1549(–1) 1.8985(–1)
150 1.2251(–1) 1.2867(–1) 1.6019(–1) 1.7927(–1)
160
170
180

7.0563(–2) 
1.3890(–1) 
2.0613(–1) 

8.1232(–2) 
1.4444(–1) 
1.8439(–1) 

1.1139(–1) 
1.6606(–1) 
3.3481(–1) 

1.3792(–1)
1.7916(–1)
2.0715(–1)

 

*8.8641(–1) = 8.8641⋅10–1  
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