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Prediction of rain showers in the areas of big cities.
Model and methodology
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We describe the increasing anthropogenic influence on the processes resulting in the formation of
convective clouds and rain showers in the areas of big cities. The three-dimensional model of a convective
cloud is proposed that allows for the microphysical processes of the drop generation and growth. The
numerical scheme for the model realization, based on the splitting method, is developed for the use at the
advection stage of the monotonic scheme. The methodology is proposed for predicting rain showers in the

areas of big cities.

Introduction

The convective airflows depend both on thermal
factors (buoyancy) and dynamic ones; the thermal
instability of the atmosphere plays a key role in the
development of convection. A local superheat of the air
near the underlying surface can serve the starting
stimulus for the development of convection, as well as
the turbulence or macroscale (mesoscale) dynamic
interaction of the flow with the underlying surface. It
should be noted that cumulonimbus clouds are produced
not by separate thermal springs but by quasi-ordered
mesoscale air ascent.! Such an ascent occurs most often
above the windward mountain slopes, in the gravitational
wave crests, and above the areas where thermal
characteristics and the roughness of the underlying
surface change sharply (near the banks of rivers and sea
cost, in the vicinity of urban areas). The contaminants
emitted to air over big cities, in combination with the
peculiarities of the underlying surface (considerable
roughness, increased thermal conductivity, small albedo,
etc.), and the availability of industrial heat sources
have a noticeable effect on the micro- and mesoclimate
regime in the city and its environments. Under the
action of these factors in big cities considerable changes
occur in the distributions of temperature and humidity
of the air, wind velocity, radiation, visibility, the amount
of precipitation, the conditions of formation of clouds
and fogs.2

Thus, it becomes evident that it is necessary to
take into account the peculiarities of the underlying
surface, heat release, distribution of condensation centers
in the regions of big cities in modeling cloud formation
and in predicting the precipitation.

This paper describes the problem of predicting rain
showers in big cities with the account of the above
factors.

Set of equations of the model

As shown in Refs. 3—6 one can take, as the model
of a convective cloud, the set of three-dimensional
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nonstationary equations of thermohydrodynamics in the
nonhydrostatic — approximation  written with the
conventional simplifications for the phenomena of
mesometeorological scale (without the account of the
Coriolis force) and the kinetic equations of coagulation
(KEC) for the particle spectra in a three-phase
medium.

Equations of motion, taking into account the
advective and convective transfer, turbulence, forces of
buoyancy and baric gradient, are written in the form
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where u, v, w are the x, y, and z components of the
vector of the air motion velocity, respectively; 6" and ¢’
are the deviations of the potential temperature and
water vapor mass mixing ratio from those, 6y(z) and
qo(2), of the unperturbed atmosphere; ¢; is the specific
water content; the dimensionless pressure TU s
connected with the pressure p by the relationship

=, 5(p/1000)R/C”, where R is the universal gas
constant, ¢, is the specific heat of the air at constant

pressure, O is the mean potential temperature; Tt is the
deviation of the dimensionless pressure from its
background value;
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where K is the turbulence coefficient calculated based
on the equation of turbulence energy balance.”
The continuity equation is written in the form
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where the factor o =d Inpy(z) /dz allows for the
change of air density pg(z) with height. At deep
convection 0 is nonzero. Otherwise it is assumed that
0g=0.8
The equation of energy conservation is written as
applied to the potential temperature 6
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where M, is the mass of vapor condensed (evaporated)
per unit time; L is the specific heat of condensation; T
is the thermodynamic temperature.

The equation of water mass conservation is
analogous to Eq. (5) and is written for the mass mixing
ratio of water vapor

a_q+ua_q+z)a—q+wa—q:—MC+A'q. (6)
ot ox dy 0z

To describe the processes of occurrence, growth,
and disappearance of cloud particles, the Kkinetic
equations are included in the model. These equations
describe the transformation of densities of size
distribution of cloud drops and condensation nuclei
(CN). The kinetic equation for the cloud drop
size-distribution function f(x, y, z, m, ) is written
in the form

of
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where v,, is the fall velocity of a drop with the mass m.
The terms in the right-hand side of Eq. (7) take into
account the transformation of the function f due to the
processes of condensation and evaporation, coagulation,
cloud drop decay, the drop increase due to activation of
condensation nuclei and turbulent transfer. The range
of cloud drop radii (in the model it is 4 — 3250 pm) is
divided into 30 logarithmic-equal classes and Eq. (7) is
solved for each specific class separately.

The equation for the distribution density n(x, y,
z, 1,, t) of condensation nuclei is a little bit simpler
than Eq. (7) and has the form
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The range of radii of condensation nuclei (0.0076—
—7.58 um) is divided into 19 intervals, as is done in
Ref. 9, and Eq. (8) is solved for each of them.

For the numerical solution of a given set of
equations it is necessary to determine the boundary
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conditions, and for initiating the convection one should
define the corresponding initial conditions.

Boundary and initial conditions

The boundary conditions of the type of open
boundary are used for the fields of temperature,
humidity, turbulence energy, and drop concentration at
the side walls of the atmospheric volume considered. By
this it is meant that at those boundary points, where
the vector of air velocity is directed inside the volume
modeled, the values of the above listed characteristics
at the boundary are equal to their initial values.
Otherwise the derivative of these characteristics along
the normal to the corresponding boundary of the region
is equal to zero. At the lower boundary, the condition
of unflowing is set and at the upper boundary the
condition is set on the free surface.

The initial distributions of these parameters are
used as background distributions of temperature and
humidity during the entire calculation. The initial
conditions are set based on the data of temperature and
wind profiling of the atmosphere. Thus obtained
profiles of the components of wind velocity,
temperature, and humidity are transformed to three-
dimensional horizontally homogeneous fields of the
corresponding characteristics. In this case the fields of
temperature and pressure are adapted in such a manner
that the hydrostatics ratio holds.

The convection is initiated by the disturbance of
the temperature from a heat source located on the
Earth’s surface. At the time ¢ = 0 it is assumed that

0 =0p(2) +0(x, y, 2); g =qo(2); fp) =0, i =1(1)30;
n(r;) = njp(2), j = 1(1)19,

Numerical scheme of model realization

The set of equations of the model of convective
cloud (1)—(8), describing the change of its dynamic
and microphysical characteristics in time, consists of 3
equations of motion, equations of heat and humidity
balance, 30 kinetic equations for cloud drops, and 19
kinetic equations for the condensation centers. Besides,
in order that the solution satisfies the continuity
equation (2), it is necessary to solve, at each time step,
the Poisson three-dimensional equation for the pressure
perturbation.  For solving these problems the
spectroscopic  splitting ~ method  developed by
G.1. Marchuk!? is widely used.

The splitting method can be realized by
successively taking into account separate operators of
the set of equations. In solving the model equations we
used different numerical schemes. At the stage of
advective transfer the solution technique mainly follows
the scheme described in Ref. 6. The sole exception is
that the Smolarkewicz scheme was used except for that
of the type of the predictor-divergent corrector.!! The
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use of this scheme was caused by the fact that in
passing to the implicit scheme the fully positive
functions can take negative values, while the additional
use of the monotonic scheme enables us to avoid the
above drawback.

At the next stage, the condensation process is
taken into account. Equations, solved at this stage have
the form

9 L gmie
ot ~c, i/ Mo

99 on Con [
ot = Mo T Dot Oet €

3= + y it S LS, T AL
ot t ‘ond-evap t e ™ "

The set of equations includes Eq. (9) and the
equation of condensation drop growth written as

& BT p) (1 +E- B
dt = r+a(T, p)/a ’

(10)

where a(T, p), b(T, p) are the known functions of
temperature and pressureb; B* is the factor allowing for
the effect of drop curvature and drop-soluble salts on
the pressure of saturated vapor (equilibrium vapor
pressure); € is the supersaturation per unit volume; 7 is
the drop radius; o is the condensation coefficient.

This set is solved using the initial conditions

) _ gmt4/6, _ mt4/6
t=tl72 ’ t=tl72 ’
m+4 /6 _  mt4/6
films, =1 f|t=tm nfon o an
+4 / + +4 / +4 /
where 6" 4/6, qm 4/6, i 4/6, n"™/6 are the values of

the appropriate parameters after the realization of
splitting stages describing the advective transfer.

For stability, the condensation process is
calculated using a smaller step At.

The successive calculations are performed at this
stage:

1. We determine the initial values of the potential
temperature, mass mixing ratio of water vapor as well
as the functions n and f according to Eq. (11).

2. Using the values of the potential temperature,
we calculate the absolute temperature T and the
corresponding value of the saturating specific humidity
of water vapor q(T).

3. The  supersaturation
determined.

4. We determine the growth, during the time Ar,
of the radius of cloud drops and condensation nuclei
activated at a given supersaturation parameter, &.

5. The mass of condensed (evaporated) humidity is
calculated by the formula

E=q/q{T) -1 s
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6. We determine the variations in the temperature
AT .ond(AT) and mass mixing ratio of water vapor
AGeond(AT) due to the condensation (evaporation) of the
water vapor mass OM.

7. We calculate new values of T and ¢

T - T+ ATcond(A0); ¢ — G + DGeond(AD).

8. The operations 3—7 are repeated for the next
moment in time during the entire dynamic step.

9. In the end of the dynamic stage, at t = ¢, + At,
new values of n(r;) and f(r;) are calculated by the
interpolation method conserving the particle number
and mass.!2 At the final stage the set of equations is
solved describing the adaptation of the dynamic fields
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Having differentiated Egs. (6) and called for
solving the continuity equation, we are led to the three-

dimensional elliptic ~equation for the pressure
perturbation:
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The technique of solving the Eq. (13) is similar to
that used in Ref. 6, i.e., we used an implicit two-step
method of the upper block relaxation.!3 In contrast to
Ref. 6, taking into account the difference in horizontal
and vertical scales of the running processes, we used
different spatial steps. In the final-difference form
Eq. (13) is written as
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where i, j, k are the indices corresponding to the
variables along the x, y, and z axes, respectively;

A=Mx Ay; B= Ay Az; C = Ax Az,

Equation (14) is solved by the iteration method of
block relaxation!3 divided into two stages. At the first
stage the proper relaxation is achieved along a certain

fixed direction, and at the second stage we calculate

the final values of n;;n}:l for a given iteration.

The volume simulated is a parallelepiped with the
number of nodes 32400 (30x30x36 nodes of regular grid
with a computing volume element 1x1x0.4 km3).

Prediction technique

The rain shower prediction technique, based on
the proposed model, is as follows. First, we assign the
physical and mathematical constants necessary for
solving the equations of the model. Then we perform
the procedure of assigning the initial and boundary
conditions. In this procedure:

1. Setting the positions of nodes in space on a
regular grid within the volume simulated.

2. The values of the functions are set at the
boundaries of the volume.

3. Based on the predicted results on the fields of
wind, temperature, and air humidity with the use of
the model of processes of synoptic scale, the vertical
distributions of the above parameters are determined at
the moments to which the developed prediction refers.

4. These data agree with each other, as it is stated
above.

5. The values are found of the superheat near the
underlying surface and the vertical distribution of the
concentration of condensation nuclei of different size in
the region of a big city.

6. The numerical realization of the model is
performed by successively performing the following
procedures:

— solution of equations determining the predictor
where the equations of transfer and turbulent exchange
are solved separately for each spatial coordinate;

— correction of the solution, in which the values
of the functions at the temporal step ¢,, + 4,6 At are
refined;

— taking account of the condensation process, in
which the amount of condensed water is determined as
well as the variation of the size distribution of the
condensation nuclei and cloud droplets.

— adaptation of dynamic fields where the three-
dimensional elliptic equation is solved for the pressure
disturbance that provides satisfying the solutions of the
continuity equation.
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These procedures are performed during one step in
time; next the entire procedure of integration over the
time is performed cyclically up to the moment in time
equal to the directive time of prediction plus one hour.
If it has been found from the simulation that rain
showers are formed, then the forecast of this
phenomenon is given for the above-mentioned time.

The results of numerical experiments using the
above technique, performed by the authors to date,
point to the technique practicability and high quality
of the forecasts. Thus, as an experiment, we analyzed
the case with the intense precipitation in Moscow on
April 12, 1998. The weather on that day was conditioned
by the passage of cold weather front. During the period
from 6:00 a.m. to 18:00 p.m. of GMT in Moscow
21 mm precipitation (snow and snow and rain) was
recorded at 0—1.8°C temperature.

It can be assumed that the precipitation on that
day was steady. Then, using the A.F. Dyubyuk method
of forecasting the steady rain based on the determination
of individual variation of water vapor mass portion in
the saturated air passing both vertically and horizontally,
we could forecast rain at the intensity of 5.8 mm /12 h.
In this case, the forecast error would be about 77%.

Taking into account the convection effects, based
on the hypothesis of conditional instability of the
second type, the predicted amount of precipitation
during the considered period was 8.4 mm. Thus, the
account of the forced convection makes it possible to
decrease the forecast error for this case by 17%.

When using the model of atmospheric front,
proposed by S.A. Soldatenko, where the forced
convection and frontal effects are considered, the
following results are obtained. In this case, the
temperature contrast in the front area is about 8°C, and
the velocity gap of geostrophic wind is about 10 m /s.
At relative humidity of warm air within the limits from
90 to 95% the amount of precipitation can reach 12.2 mm
during 12 hours. The forecast error (as compared with
the standard methods) is reduced by 45%.

When using the proposed technique of the rain
showers forecast, which takes into account the effect of
heat source in the area of big city, the prognostic
estimate of the precipitation amount during the
considered period (only if taking into account the
convective effects) is 11.8 mm. This estimate is
comparable with the estimate obtained with the use of
the model of atmospheric front that illustrates the
practicability of the developed technique.

Statistically significant estimates of the quality of
the proposed technique are planned to be obtained
during further investigations.
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