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An approach, which is based on the convex Boolean programming technique, is 
proposed for solution of the problem of optimal arrangement of control actuators in 
flexible mirrors. 

 
Recently adaptive optics have been widely used for 

improving the quality of reception of optical signals passing 
through the turbulent atmosphere.1–3 When designing the 
systems of adaptive optics (such as the flexible membrane and 
plate mirrors) one of the important problems is determination of 
the optimal arrangement of control actuators. The quality of an 
optical system depends to a large extent on how successfully the 
actuators are arranged. 

The approximate methods of solution of such problems are 
well known.4 The drawback of the approximate methods is the 
difficulty of estimating how close are the derived and optimal 
solutions. In this paper an approach is proposed that enables one 
to derive the exact solution for the selected criterion of 
optimization or the approximate solution with an assured relative 
or absolute accuracy (according to the criterion of quality). 

1. When stating the problem we shall generally follow a 
description of the problem of the phase distortion correction 
given in Ref. 4. The wave–front distortion is characterized by 
the function ϕ(r).  On the mirror surface we choose a grid of 
coordinates of the acceptable points of arrangement of the 
control actuators (N nodel points). Let us characterize the error 
in the wave–front correction by the quantity 
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In what follows for brevity we will omit the area of 
integration Ω in the integrals. 

In formula (1) Ω is the area of the wave–front correction, 
ui is the value of the control action, Ri(r) is the response 

function, bi is the indicator variable taking the values of 0 and 1 

(the control actuator is positioned in the ith grid node (1) and 
otherwise (0)), γ2(r) is the weight function (which can be equal 
to unity in particular case) characterizing the importance of the 
correction errors in a respective zone of the mirror, and 1/s is 

the normalization factor, where s = ⌡⌠ γ2(r)d2r. 

It is assumed that for the fixed arrangement of the 
actuators the control action is determined by minimizing the 
function 
 

f (u) = Δ2(u; b) + λ uTu , (2) 
 

where b is the vector of the Boolean variables 
b = (b

1
, ..., bN), u is the vector of the control actions 

u = (u
1
, ..., uN), and T denotes transposition. 

Such a statement is idealized, of course, since it presumes 
the observation of the wave–front phase over the entire 
aperture as well as the possibility of instantaneous correction of 

distortions. However for the problem of optimal arrangement of 
the actuators this statement is quite justified. 

The first term in Eq. (2) characterizes the error in 
correction of the phase distortions and the second term is the 
addition limiting the great values of the control actions. The 
value of the limiting addition is controlled by the parameter λ 
and, depending on anyone's preference, it can be reduced to zero. 

The optimal control action u* at the fixed b can be found 
as a solution of the equation derived by setting the derivatives of 
the function f over all the components u equal to zero. 

By omitting the calculations we can write the relation for 
the optimal control 
 

u* = (λ I
 + B D B)–1

 B c , 
 

where B = diag(b
1 

1/2, ..., bN 
1/2) and the components of the 

vector c and matrix D are determined by the formulas 
 

ci = ⌡⌠ γ2(r) ϕ(r) Ri(r) d2r ;  Dij = ⌡⌠ γ2(r) Ri(r) Rj(r) d2r . 

 

We take the criterion of optimization of actuator 
arrangement in the form 
 

J(b) = <Δ2(u*, b)> , 
 

where the angular brackets denote averaging over the 
ensemble of realizations. 

By substituting the relation for u* into formula (1) and 
after several transformations we have 
 

J(b) = 
1
s ⌡⌠ γ2(r) <ϕ2(r)> d2r – <cT

 B V B c> – λ <cT
 B V V B c> , 

 

where V = (λ I + B D B)–1. 
Using the calculation operator of the matrix trace tr and 

introducing the notation Q = <ccT> we can write down 
 

J(b) = 
1
s ⌡⌠

 γ2(r) <ϕ2(r)> d2r – tr (QL) , 

 

where L = B V (I + λV) B . 
The elements of the matrix Q are derived by the formula 
 

Qij = ⌡⌠ ⌡⌠ γ2(r) γ2(ρ) <ϕ(r) ϕ(ρ)> Ri(r) Rj(ρ) d2r d2
ρ . 

The problem of optimal arrangement of actuators is 
written in the form 

 

min J(b) ; b ∈ Ψ ; b ∈ {0, 1}N . (3) 
 

The set Ψ for the simplest case has the form
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that corresponds to the solution of the problem of 
optimization when there are M actuators. It should be noted 
that in the general case Ψ can be determined by the system of 
linear equalities and (or) inequalities corresponding to the 
conditions of the problem. 

2. In this section when studying the properties of J 
relative to the optimized variable we consider b as the 
continuous vector variable b ≥ 0. 

Let us introduce the notation 
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where F = diag (b
1
, ..., bN) . 

After simple transformations for L we derive  
 

L = 2 W – W D W . 
 

Let δb be the small variation of the independent 
variable. We consider the first variations of L(b): 
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For variations of W(b) we have 
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Taking into account that D–1 – W, – δ2W, and D are 
the positive definite matrices we obtain the inequality δ2L ≤ 0, 
whence it follows that 
 

δ2J = – tr (Q δ2
 L) ≥ 0 , 

 

i.e., J(b) is the convex function with respect to b ≥ 0. 
3. By studying the properties of J(b) we find out that 

Eq. (3) is the problem of the convex Boolean programming. 
Effective calculational algorithms can be used for solving such 
problems. We use an algorithm taken from Ref. 5 which after its 
simple modification enables one to seek for not only the exact 
solution, but also approximate solutions with the assured 
absolute or relative accuracy. The scheme of the algorithm is 
given below. 

Let the initial point b0 ∈ Ψ be available and ε be a 
prescribed absolute value of the tolerance for the accuracy of a 
search (with respect to the criterion of quality). Let m = J(b0) –
 ε. The variable being the counter of iterations is assigned an 
initial value of i = – 1. 

(1) Assume that i = i + 1 and draw the tangent hyperplane 
to J(b) at the point bi  

 

gi(b) = J(bi) + ∑
j = 1
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(2) Determine the set 
 

Mi = {b : g
0
(b) < m ; ... ; gi(b) < m ; b ∈ Ψ} . 

 

(3) Find the value k so that  
 

J(bk) = min [ J(b0), ... , J(bi)] .  
 

Assume m = J(bk) – ε. 
(4) If the set Mi is empty then the solution of 

problem (3) with the assured absolute accuracy ε is bk. 
(5) If Mi is not empty, then the solution bi+1 of the 

problem of the linear Boolean programming can be sought for 
 

min gi(b) ;  b ∈ Mi ;  b ∈ {0, 1}N . 
 

(6) Go again to item 1. 
Let us note that in item 5 as bi+1 we can take any 

acceptable point from the set Mi. 

The above–described algorithm converges over the finite 
number of iterations. 

When the problem of optimization with the prescribed 
relative tolerance δ is needed to be solved, in the above–
described algorithm it is necessary to set m = (1 – δ*)J(b0) 
before entering the cycle and m = (1 – δ*)J(bk) in the body 
of the iterating cycle, where δ* = δ/(1 + δ). 

4. Let us consider the problem of optimal arrangement of 
the M control actuators on the flexible mirror when 
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where ri(i = 1, ..., N) are the coordinates of the nodel points, 

r
0
 is the radius of the Fried correlation for fluctuations of the 

wave front. 
In order to have the possibility of performing the 

analytical calculations of elements of the matrices Q and D 
we assume that the circled area Ω has the radius much greater 
than r

γ
. The elements of the matrices Q and D can be derived 

by the formulas 
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The grid of acceptable nodel points (N = 31) is taken as in 
Ref. 4 on the "cobweb" formed by three equidistant concentric 
circles and twelve rays issued out of the center at equal angles. 
We take the central point, the odd points on intersection of the 
first (inner) circle with the rays, and all the points of 
intersection of the second and third circles with the rays as the 
nodel points. The radii of the circles are equal to 2, 4, and 6, 
respectively (in the given case the dimensionless values are 
considered). 
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In calculations the following numerical values of the 
parameters are taken: σ

ϕ

2= 0.01, r
0
 = 15, r

γ
 = 6, rR = 10, and 

λ = 0.3. 
The problem of arrangement of four actuators is solved. 
The proposed approach to solution of the problem of 

optimal arrangement of actuators was studied by a computer of 
IBM PC AT series. In the algorithm of the convex Boolean 
programming the number of iterations is turned out to be 
dependent strongly on the value of the tolerance for the solution 
accuracy (the "rougher" is the solution, the less is the number of 
iterations). 

Table I represents the results obtained for different values 
of the relative tolerance at the initial point b0 corresponding to 
the nodel points numbered 2, 3, 5, and 6. The value of the 
criterion of quality J* corresponds to the value of the argument 
b obtained in the search. 

 
TABLE

 
I. 

 

 δ(%)  J*⋅103
 Nodel point numbers  Iteration 

number  
 0 1.799 21 24 27 30 65 
 1 1.799 21 24 27 30 48 
 2 1.799 21 24 27 30 40 
 5 1.835 22 24 27 30 22 
10 1.886 22 23 27 31  8 
20 1.928  4 20 24 29  5 

 
It can be seen from Table I that for relative tolerances 1% 

and 2% the obtained solutions are identical to the exact ones. 
For a relative accuracy of 10% the solution can be obtained by 
eight iterations (which is eight times less than the number of 
iterations in the search for the exact solution), i.e., 
approximately in an order of magnitude faster than the exact 
solution.

 

The process of the search when δ = 1% is shown in 
Table II. 

TABLE
 
II. 

 

Serial number of 
iterations 

J⋅103
  Nodel point numbers 

1 2.365  2  3  5  6 
2 2.106 23 24 25 30 
3 2.496 19 20 28 29 
4 2.052  4 18 20 24 
5 2.064 11 22 27 28 
6 1.976 11 15 30 31 
7 1.886 22 23 27 31 
8 1.902 13 21 26 29 

 

The search ends after completion of all eight iterations. The 
point obtained at the seventh iteration is taken as an 
approximate solution with the assured 10% accuracy. 

Let us note that the above–described approach can be used 
together with other approximate and heuristic algorithms (which 
have been already known or will be developed in future), in 
particular, for estimating their accuracy. 
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