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Methods and numerical algorithm of aerosol microstructure reconstruction from light 
scattering characteristics is considered based on integral distribution functions describing dispersion 
composition of aerosol particles. The efficiency of the proposed methods was investigated in a 
numerical experiment consisting in conversion of spectral measurements of the extinction coefficients 
of submicron aerosol particles. The approach developed allows automation of solving inverse 
problems in processing large data bulks of routine measurements. 

 

Introduction 

Methods of sun photometry are widely used for 
regular monitoring of the optical state of the 
atmosphere, including its aerosol component. The 
series of multi-wavelength sun photometers has been 
developed at the IAO SB RAS, with which regular 
measurements of the atmospheric transmission are 
being carried out.1,2 The developed instrumentation is 
capable of measuring the brightness of radiation 
scattered within the solar aureole. The significant 
amount of experimental data on the optical properties 
of the atmosphere in a wide wavelength range has 
been obtained. 

The important stage of the researches performed 
is obtaining the data on microphysical parameters of 
atmospheric aerosol from the optical characteristics 
measured. As known, this is related with solving the 
so-called ill-posed inverse problems and requires the 
high-level professional skill of a researcher. So, it is 
very urgent to develop methods for solving the 
inverse problems of aerosol light scattering suitable 
for the mass automated processing of the huge arrays 
of experimental data while using minimum a priori 
information about the solution sought. 

The results of investigations on the development 
of the technique for retrieval of the aerosol 
microstructure from light scattering characteristics 
are presented in this paper. It is based on the use of 
the integral distribution functions for description of 
the disperse composition of aerosol particles. 

Mathematical statement of the 
problem, basic equations 

1.1. Application of the Stieltjes integrals  
for describing light scattering characteristics 

of polydisperse aerosol 

It is known that particles randomly distributed 
over space scatter light independently. Therefore, the 

scattering properties of a system of such particles can 
be found by summing the relevant optical 
characteristics of individual particles. For example, 
let us assume that the medium consists of isotropic 
spherical particles, whose extinction cross section 
σex(λ, r) at the wavelength λ depends on their radius 
r, 0 < r ≤ R. Then, dividing the particle size range 
into the intervals Δri that do not overlap, one can 
represent the volume extinction coefficient of 
polydisperse ensemble of particles by the following 
sum 

 
ex

( ) ( , ) ,i i

i

Nε λ = σ λ ξ Δ∑  (1) 

where i irξ ∈ Δ , iNΔ  is the number of particles per 

unit volume of the medium per size interval Δri. 
Proceeding to limit in Eq. (1) at tending the length 
of the maximum interval Δri to zero leads to 
representation of the extinction coefficient ε(λ) in the 
form of the Riemann–Stieltjes integral 

 ex

0

( ) ( , )d ( ),

R

r N rε λ = σ λ∫  (2) 

where the function N(r) determines the total number 
of particles with the radius less than r per unit 
volume of the medium. By replacing the cross section 
σex(λ, r) by the extinction efficiency factor 

2

ex( , ) ( , )/( )K r r rλ = σ λ π  one obtains the equivalent 

representation of the form 

 

0

( ) ( , )d ( )

R

K r S rε λ = λ∫  (3) 

in which the function S(r) is the total geometric 
cross section of particles with the radii less than r. 
Thus, the representation of the optical characteristics 
of a polydisperse ensemble of particles in the form of 
the Riemann–Stieltjes integral (2) or (3) is quite 
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natural generalization of summing the contributions 
coming from individual particles. 

In practice, assuming existence of the derivative 
of the function dN(r)/dr = n(r) or the derivative of 
the function dS(r)/dr = s(r) = πr2n(r) on the interval 
[0, R] one usually uses the representation of the light 
scattering characteristics of a polydisperse aerosol by 
the Riemann integral. However, in reality, aerosol 
size distributions are discrete, and such a 
representation is, to a certain degree, a mathematical 
idealization that can be accepted if a sufficient 
number of particles have sizes in each narrow interval 
[r, r + dr], and no localized monodisperse fractions 
exist in the medium. One often uses smooth functions 
of simple analytical form or linear combinations of 
such functions in describing the model distributions 
n(r). 

The fact of quite limited possibilities of 
describing the aerosol disperse composition by use of 
differential size distribution functions n(r) or s(r) 
becomes more obvious in solving the inverse 
problems. The regularization procedures used in 
solving such problems lead to narrowing the class of 
solutions admissible because of the requirements of 
continuity, smoothness, etc. 

One can avoid some of the aforementioned 
restrictions, by using the integral representation of 
the particle size distribution in describing the 
disperse composition of aerosol. For certainty, we 
shall use, in what follows, the function S(r) that 
describes the size distribution of the particles’ 
geometric cross sections. Let us note some specific 
properties of the function S(r) that make it belonging 
to a certain class of functions Ω. It is a positive 
function monotonically non-decreasing on the 
interval [0, R] and continuous from left. Besides, as 
one always can estimate a priori, the total cross 
section of all particles in a unit volume, let us 
consider the constant C restricting the functions 

S(r) ∈ Ω, r ∈ [0, R] from above ( ) ( )S r S R C≤ ≤ . 
It is known that any monotonic function can be 

represented as a sum of a continuous monotonic 
function and a saltus function. So one can write the 
following expansion 

 ( ) ( ) ,

k

k

r r

S r S r

<

= + σ∑�  (4) 

where ( )S r�  is the continuous monotonic function, 

which has the derivative d d ( ),S/ r s r=

�  and the 

second term defines the saltus function at the break 
points rk. The saltus function in the considered 
problem determines the presence of monodisperse 
fractions of aerosol with the particle radii rk and the 
total cross section σk. Taking into account the 
expansion (4), the extinction coefficient ε(λ) (3) can 
be written in the form of the following sum 

 

0

( ) ( , ) ( , ) ( )d

R

i i

i

K r K r s r rε λ = λ σ + λ∑ ∫ . (5) 

Formula (5) differs from the traditional 
representation of this optical characteristic of a 
polydisperse aerosol using the differential distribution 
function s(r) by the first term, which explicitly 
defines the total contribution of the monodisperse 
fractions to this characteristic. 

1.2. Statement of inverse problem and the way 
of solving 

Let us consider the inverse problem on seeking 
the distribution function S(r) from Eq. (3). To solve 
it, let us first integrate Eq. (3) by parts. This yields 
the following integral equation relative to the 
function S(r): 

 

0

( , )
( , ) ( ) ( )d ( ).

R

K r
K R S R S r r

r

∂ λ
λ − = ε λ

∂∫  (6) 

If one passes in Eq. (6) from the function S(r) 

to the function ( ) ( ) ( ),S r S R S r↓ = −  then the 

equation is obtained that, in contrast to Eq. (6), does 
not contain the function to be sought under the 
integral sign: 

 

0

( , )
( )d ( ).

R

K r
S r r

r
↓

∂ λ
= ε λ

∂∫  (7) 

In practice it is preferable to deal with this 

monotonically decreasing function ( ),S r↓  because it, 

in contrast to the function S(r), goes to zero out of 
the limits of the interval [0, R]. Equations (6) and 
(7) have general structure of the equation of first 
kind: 

 .QS = ε  (8) 

From the physical point of view it is clear that 
the exact solution of Eq. (8) S0(r) exists and it 
belongs to the Ω set. As shown in Ref. 3 the set Ω is 
compact in the space [0, ],pL R  p > 1. Because of 

continuity of the inverse operator 1Q−  on the set 

QΩ , narrowing of the set of admissible solutions to 

the compact class Ω is sufficient for constructing a 
stable approximate solution of Eq. (8). The effective 
numerical algorithms have been developed to date for 
solving some ill-posed inverse problems on compact 
sets.3 To construct a stable approximate solution of 
Eq. (8) it is sufficient to minimize the discrepancy 
functional 

 
22F QS= − ε  (9) 

on the set Ω. Any function ( ) ,S rδ ∈ Ω  for which the 

functional 2 2
,F ≤ δ  where 2

δ  characterizes the error 
in the initial data can be accepted as the approximate 

solution of Eq. (8). The convergence 0( ) ( )S r S rδ →  

takes place in the space [0, ]pL R  at ð > 1. 

Let us note other important properties of the 
approximate solution ( )S rδ  revealed in Ref. 3. If it 
has been known that S0(r) is a continuous function, 
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that corresponds to the absence of the second term in 
Eq. (4), then ( )S rδ  converges to S0(r) uniformly. 
However, the approximate solution ( )S rδ  can be a 
discontinuous monotonic function. Finally, if S0(r) 
has been the piecewise continuous function, then 

0( ) ( )S r S rδ →  uniformly within each closed interval, 
which does not contain the break points of the exact 
solution S0(r). 

Comparing the described approach to the 
problem of determination of the aerosol 
microstructure from the characteristics of light 
scattering by the methods using regularization 
algorithms based on minimization of the smoothing 
functional,4 one can note the following differences. 
The use of the method of smoothing functional is 
oriented mainly to the problems of retrieval of 
continuous smooth aerosol distributions s(r). 

Passing to the integral representation of 
microstructure of the aerosol size distributions makes 
it possible to essentially expand the class of 
correctness at solving the inverse problems. If the 
distributions s(r) are discontinuous, and are not 
enough smooth, then it is worth representing the 
disperse composition of aerosol by the integral 
distributions S(r). In this case, it is sufficient to use 
the approximation of the piecewise continuous 
function S(r) in describing the aforementioned breaks 
in the distributions s(r). Moreover, if assuming 
breaks of the function S(r) itself, one can consider 
the situations when the monodisperse aerosol fractions 
can exist in the aerosol size distributions that would 
yield δ-peculiarities in the distributions s(r). 

The possibility of estimating the error in the 
approximate solution based on the data on the errors 
in the initial data is among other important 
advantages of the solution of inverse problem for 
Eq. (8) on the compact Ω (see Ref. 3). 

The integral distributions S(r) are less 
frequently used in describing the disperse 
composition of aerosol as compared with other ways 
of setting the aerosol microstructure. Based on the 
description of the aerosol microstructure in the 
form (4), one can pass to other parameters that are 
more widely used in describing the aerosol 
microstructure. Those are the number density, 
volume packing factor, moments of different order, 
including the mean value, half-width, etc. For 
example, the volume packing factor V and the mean, 
over the distribution S(r), radius of particles 

s
r  are 

presented by the formulas using the function S(r): 
 

 

0

( ) ( )d ;

R

V a RS R S r r

⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∫  (10) 

 /[ ( )], 4/3.
s
r V aS R a= =  (11) 

1.3. Finite difference approximation  
of the Stieltjes integrals 

In solving direct and inverse problems stated by 
the integral equations (6) and (7) relative to the 

function S(r), the difficulties in calculation can 
appear because the presence of derivatives of the form 

(.)/K r∂ ∂  of the corresponding Mie efficiency factors 
in the integrand. Then the necessity appears of 
developing the algorithms for calculating the 

derivatives / ,K r∂ ∂  which strongly oscillate about 

zero level. Calculation of the integrals of a function 
with such properties is a non-trivial problem and 
requires application of special quadrature formulas. 
In the simplest case, one can perform discretization of 
the problem using the procedure considered below. 
 Let us define a uniform grid for setting S(r) at a 
given number of nodes n with the step Δ = R/n, on 
which we shall approximate the distribution S(r) by 
piecewise continuous function (spline) following the 
formula 

 
1

( ) ( ),
n

j j

j

S r S N r

=

=∑  (12) 

where Sj = S(rj) (S(0) = 0). The basis functions 
Nj(r) have the form 

 0( ) [( )/ ]j jN r N r r= − Δ , j = 1, 2, …, n,  (13) 

where 

 0

1 , 1,
( )

0, 1.

r r
N r

r

− ≤⎧
= ⎨

>⎩
 

At such an approximation the set of functions 
S(r) joins the set of the vectors S with the non-
decreasing components 

 1 20 ...
n

S S S C< ≤ ≤ ≤ ≤ , (14) 

where C is the upper boundary of the total cross 
section of particles. Substituting Eq. (12) into 
Eq. (6) and making some other transformations we 
obtain the finite difference analog of Eq. (6): 
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j j

j

Q S

=

λ = ε λ∑ , (15) 

where 

 1( ) ( ) ( ), 1,...,j j jQ K K j n
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λ = λ − λ = ; (16) 
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r

n
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K

+
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−
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∫
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The functions ( )jK λ  (j ≠ n) represent the 

averaged values of the kernel K(λ, r) on the intervals 
[rj, rj+1]. It is seen from Eqs. (15)–(17) that in the 
finite difference procedure considered there is no need 
in calculating the integrals containing the derivatives 

/K r∂ ∂ . 
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1.4. Estimation of the upper bound  
of the integral distribution 

In practical realization of the considered method 
it is necessary to have data on the total geometric 
cross section of particles determined by the S(R) 
value or, at least, on any of its estimate from above. 
This would be an easy task if one knows the 
admissible range of variations of the mean extinction 

efficiency factor ( ) ( )/ ( )K S Rλ = ε λ . The following 
value can be chosen as such an estimate in Eq. (14): 
 

 min( ) ( )/ ( )
s

C S R K= γ = ε λ λ , (18) 

where min/
s

K Kγ =  characterizes the measure of 

closeness between C and ( ),S R  and min( )K λ  is the 

minimum value of the mean efficiency factor on the 
set of admissible models of microstructure. Besides, 
one should select the minimum value with respect to 
λ from the set of C values given by Eq. (18). 

The set of spectral dependences of the mean 

efficiency factor ( )K λ  calculated using the “haze H”5 
model of microstructure at different values of the 
refractive index is shown in Fig. 1 as an example. It 

is seen from Fig. 1 that the efficiency factor ( )K λ  at 
all wavelengths takes the minimum values at the 
minimum value of the real part of the refractive 

index. The ratio min/
s

K Kγ =  is most close to unity 

in the left-hand side of the spectral interval. For 
example, if the true value of the complex refractive 
index is equal to (1.5 – i · 0), then the estimate made 
without the account of the absorption at λ = 0.31 μm 

is (0.31)
s
γ = 1.05. If admitting that the imaginary 

part of the refractive index can be within the limits 
0 0.05≤ κ ≤ , then the estimate γ

s(0.31) increases up 
to 1.14. 
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2 – m = 1.45 – i ⋅ 0 

3 – m = 1.55 – i ⋅ 0 

4 – m = 1.35 – i ⋅ 0.05 

K

 
Fig. 1. The effect of the refractive index on the spectral 

dependences of the mean extinction efficiency factor ( )K λ  
for a model polydisperse aerosol of the type of haze H. 

 
The tendencies in the behavior of sγ  revealed 

remain the same for more complicated models of the 
microstructure, when particles of coarse aerosol 

fraction are present in the medium together with the 
particles of submicron size. Figure 2 shows the 

dependences of the mean efficiency factor ( )K λ  for 
the model, in which the particles of coarse fraction 
are represented by a wide lognormal distribution 
with the mean radius 

s
r = 1.23 μm at different value 

p of its relative contribution to the total extinction 
coefficient ε(λ) at the wavelength λ = 0.55 μm.  
In this case the complex refractive index was taken 
to be the same for both fractions and equal to  
1.35 –  i · 0.  
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Fig. 2. Variability of the spectral dependence of the mean 

extinction efficiency factor ( )K λ  at variations of the 
relative contribution p of the coarse fraction to the total 
extinction coefficient ε(0.55): p = 0 (1);  0.2 (2);  0.5 (3). 

 
It is seen from Fig. 2 that in the vicinity of the 

wavelength λ = 0.41 μm all curves intersect, i.e., the 
choice of the model of microstructure does not affect 

the value of the efficiency factor ( )K λ  at this 
wavelength. The estimate sγ  for λ = 0.41 μm changes 

within the limits 1.25–1.35 for the range of 
admissible values of the imaginary part of the 
refractive index 0 ≤ κ ≤ 0.05. 

Thus, it follows from the presented estimates 
that at variations of the microphysical parameters of 
the aerosol model in quite a wide range, the value of 
the proportionality coefficient in the ratio 

( )
s

C S R= γ  between the total geometric cross section 

of aerosol particles ( )S R  and the estimate of its 
upper bound C obtained from Eq. (18) does not 
exceed the value 1.35, at least. 

2. Simulation of the inverse problem 
for the extinction coefficient  

of submicron aerosol 

Closed numerical experiment has been carried 
out in order to estimate the effectiveness of the 
proposed technique in solving the inverse problem. 
The aerosol distribution of the haze H type in the 
submicron size range is considered in this paper as 
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the model. The results obtained by numerical 
simulation using a more complicated model 
comprising two aerosol fractions, submicron (s) and 
coarse (c), are considered in the second part of this 
paper.6 

The accuracy of retrieval of the integral size 

distribution function ( )S r↓  is studied in the 

numerical experiment, as well as the respective 
parameters of the microstructure: the mean radius of 
particles 

s
r  [Eq. (11)] and the volume packing factor 

V [Eq. (10)]. Solution to the inverse problem was 
found by minimizing the functional of 
discrepancy (9), under the restrictions (14), using the 
method of conditional gradient.3 

Special attention was paid to the study of the 
effect the amount of initial data and the errors in 
them, as well as the errors in a priori setting of the 
refractive index produce on the inversion results. The 
problems of algorithmic realization of the 
minimization procedure were considered in detail. To 
peak generally, the boundaries of the size of 
scattering particles are among the unknown 
parameters, which are set a priori. Earlier, in 
Section 1.4 recommendations have been given on the 
a priori setting of the upper boundary of the total 
geometric cross section of particles. The effect of this 
boundary on the solution quality is considered below. 
 In the numerical simulations the values of the 

extinction coefficient 0 0( )i iε = ε λ  were calculated 

using a preset model of the aerosol microstructure. 
Then the random error was introduced according to 
the following rule: 

 0 0,1 (2 1)i i iε = ε + ε δ η − . (19) 

The specific values of the wavelengths from the 
spectral range [0.31; 4.0] μm were selected according 
to the capabilities of the instrumentation.1 The value 
δ in Eq. (19) characterizes the level of the relative 
error, and iη  is the realization of the random value 

uniformly distributed over the range [0, 1). 
The examples of retrieval of the integral size 

distribution function ( )S r↓δ  for the model of the 

medium formed by only submicron particles with the 
complex refractive index m = 1.5 – i · 0 are shown in 
Fig. 3 for δ = 0.05 and 0.1. 

Let us note some peculiarities of the results 
obtained by inversion. First, it is related to the upper 
boundary R of the particle size in solving the inverse 
problem. It is known that the efficiency of retrieving 
the differential aerosol size distributions essentially 
depends on the correct selection of the range of 
definition of the solution sought. In this example, it 
was not assumed a priori that particles belong to the 
submicron range, so the value R = 4.15 μm was 
selected with a certain reserve. Nevertheless, the 

retrieved functions ( )S r↓δ  were set on the range 

r < 0.75–0.8 μm. The contribution of particles of 
greater  size  to the total cross section is less than 1%. 

0.1 0.2 0.3 0.4 0.5 0.6 r, µm
0

0.1

0.2

0.3

0.4

3 

2

1

S(r)

 

Fig. 3. Results of retrieval of the function ε(λ) at the 
known value of the refractive index and different error in 
measurement: (1) model distribution; (2, 3) distributions 

( ),S r↓δ  retrieved at δ = 0.05 and 0.1, respectively. 

 

Now let us consider how the a priori set upper 
boundary C of the total cross section of particles 

affects the retrieved function ( ).S r↓δ  The model 

calculations on retrieval of the integral size 

distribution function ( )S r↓δ  at different a priori 

setting the upper boundary C in the inequalities (14) 
were carried out using the estimates of γs obtained in 
Section 1.4. It was revealed from the analysis of the 
results obtained that the choice of the value C 

mainly affects the retrieval of the function ( )S r↓δ  at 

small r values, i.e., in the range where the particles 

are optically less active. The dependences ( )S r↓δ  in 

the range r <  0.12 μm retrieved for γs from the range 
1.1–1.4 are shown in Fig. 4 as an example. 

 

0 0.05 0.10
0.3

0.4

0.5

4

3

2

1
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r, µm
 

Fig. 4. The shape of the distribution ( )S r↓δ  at small r, 

retrieved in the numerical experiment as a function of the 
parameter  γs: γs = 1.1 (1); 1.2 (2); 1.3 (3); 1.4 (4). 

 

At r → 0 the divergence of the curves presented 
in Fig. 4 monotonically increases. This leads to the 
increase of the error in retrieval of the total cross 

section of particles ( ) (0)S R Sδ ↓δ=  due to 
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overestimation of the contribution coming from the 
smallest particles. 

The dependence of ( )S Rδ on γs shown in Fig. 5 

is practically linear. 
 

1.1 1.2 1.3 γs 

0.40 

0.42 

0.44 

S(R) 

 
Fig. 5. The total cross section S(R) as a function of the 
parameter  γs. 

 
It follows from Fig. 5 that the error in retrieval 

of the total cross section ( )S Rδ  at the maximum 

value 
s
γ = 1.4 increases by 15%. One should note 

that the choice of γ
s
 and the respective changes of the 

retrieved values ( )S Rδ  practically do not affect the 

level of the discrepancy obtained, which does not 
exceed 5% in the range 0.31 0.55≤ λ ≤  μm. So one 
can conclude that the variations in the behavior of 

the retrieved dependences ( )S r↓δ  shown in Fig. 5 are 

caused, first of all, by the a priori data on the upper 
boundary C introduced. The effect of the value γs, 
and, at the same time, the upper boundary C on the 
accuracy of retrieval of the parameters of 
microstructure V and 

s
r  is shown in the Table 

below. 
 

Table. The parameters of haze microstructure retrieved by 
numerically inverting the spectral dependences ε(λ) 

Para- 
meter 

Precise 
data 

δ=0.05, 
γs=1.1 

δ=0.10, 
γs =1.1 

δ=0.10, 
γs=1.4 

δ=0.10, 
n=1.45 

δ=0.10, 
n=1.55

δ=0.10, 
κ=0.05

R = 4.15 μm 
V 0.124 0.127 0.132 0.135 0.144 0.124 0.121
,

s
r μm 0.241 0.251 0.252 0.225 0.275 0.233 0.234

R = 0.55 μm 
V 0.119 0.121 0.122 0.125 0.130 0.114 0.121
,

s
r μm 0.234 0.242 0.236 0.211 0.255 0.216 0.234

 
The effect of the errors in the refractive index. 

In the above section, when retrieving the aerosol 
microstructure from optical measurements, the 
refractive index of particles was assumed known 
exactly, and was equal to 1.5 – i · 0. However, in 
practice, as a rule, the value of the refractive index is 
known with some error, it is necessary to estimate 
the effect of the errors in a priori setting the 

refractive index on the accuracy of retrieval of the 
aerosol microstructure. The results of retrieving the 

integral distribution ( )S r↓δ  at the error in setting the 

real part of the refractive index 0.05nΔ = ±  and the 
random measurement error of δ = 0.1 are shown in 
Fig. 6. The following general conclusion can be 
drawn from comparison of the dependences (Fig. 6) 
with the results obtained by solving the inverse 
problem with the precise refractive index (see 
Fig. 3). The effect of the errors in the real part of 
the refractive index is qualitatively revealed as the 

shift of the curves ( )S r↓δ  with respect to abscissa 

and ordinate axes. The errors in setting the imaginary 
part of the refractive index analogously affect the 

retrieved distribution ( )S r↓δ . 
 

0.1 0.2 0.3 0.4 0.5 0.6 
0

0.1

0.2

0.3

0.4

S↓(r)  

r, µm

2

1

3

 
Fig. 6. The effect of a priori choice of the refractive index 
on the results obtained by inverting the function ε(λ):  
model distribution with the refractive index n = 1.5 (1); 

distributions ( ),S r↓δ  retrieved at the error in measurement 

δ = 0.1 (2, 3) [n = 1.45 (2); 1.55 (3)]. 
 

Retrieval of the parameters of microstructure. 
The final purpose of the study is retrieval of the 
parameters of microstructure, i.e., the mean radius 

s
r  

and the volume packing factor V. The model 
calculations of these parameters by formulas (10) and 
(11) are presented in the Table for R = 4.15 μm and 
0.55 μm. The first value refers to the case when the 
a priori information on the correspondence of the 
particle ensemble to the submicron range is absent. 
The second one defined the upper boundary R of 
optically active particles, for which the contribution 
to extinction of coarse particles was within the 
measurement error. 

The data given in the Table for two R values 
are close to each other, but there are some 
differences. Both the packing factor and the mean 
radius of particles decreased, though insignificantly, 
because of ignoring particles with the size greater 
than 0.55 μm. Columns 3–5 contain the retrievals of 
the parameters of microstructure using exact 
refractive index, and columns 6–8 show the results at 
additional error in setting real and imaginary parts of 
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the refractive index. Column 5 characterizes the 
maximum effect of a priori uncertainty in setting the 
total geometric cross section S(R) represented by the 
parameter γ

s
 (see Eq. (18)). 

Let us note the main characteristics of the 
accuracy of retrieval of the parameters of 
microstructure for R = 4.15 μm. The error in 
calculating the volume packing factor V does not 
exceed 6% (at the exact value of the refractive index) 

and 16% at 0.05nΔ =  for measurements ε(λ) with 

the error δ = 0.1. The absolute error in retrieving the 
mean radius of particles under the same conditions is 
about 0.01 and 0.03 μm, respectively. The 
uncertainty in the choice of the real part of the 
refractive index stronger affects the retrieval of both 
parameters than its imaginary part.  

As to the data at R = 0.55 μm, one can note, in 
general, that narrowing the range of definition of the 
retrieved function to the boundaries out of which real 
distribution is equal to zero, improves the accuracy of 
estimation of both the volume packing factor and the 
mean radius of particles. 

Conclusion 

It is proposed to use the integral aerosol size 
distributions for retrieval of the parameters of aerosol 
microstructure from optical measurements with multi-
wavelength sun photometers. It is shown that within 
such an approach an approximate stable solution of 
the inverse problem can be found by minimizing the 
functional of discrepancy on the set of monotonic 
bounded functions without any additional restriction 
of the sought solution and attraction of special 
regularization procedures. This enables one to easily 
automate the process of processing large amount of 
measurement data in the regime of continuous 
observations.  

Refusing from retrieval of a detailed information 
on aerosol microstructure in the form of differential 
particle size distribution function does not hamper 
obtaining data on the moments of different orders, 
including the mean particle radius and the volume 
packing factor, from the inverted data. In many 
practical applications, these data are sufficient for 
the control of the state of atmospheric aerosol. 

The efficiency of the proposed technique in 
solving the inverse problem for measurements of the 
spectral dependences of the light extinction by 
submicron aerosol is shown by the methods of 
numerical simulation. It is shown that the volume 
packing factor of submicron aerosol is determined 
with the error less than 6% and the accuracy of 
retrieval of the mean radius of particles reaches 
0.01 μm. 
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