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The propagation of a partially coherent focused beam along the vertical path in the 
atmosphere is investigated. An algorithm for retrieving the focusing parameters of a 
beam is proposed which allows one to obtain the angular beam width close to minimum.  

It is shown that even for optimal focusing of a beam the efficiency of radiation 
transfer can be increased for only a limited range of variations of the energy 
parameters of a beam.  

 

Investigations of propagation of the high-power laser 
radiation in the atmosphere have revealed different 
nonlinear effects that distort the spatial and temporal 
characteristics of the radiation.1 Phase correction of the 
radiation at the radiating aperture makes it possible to 
compensate for these distortions.2,3  

As was shown in Ref. 4 in aberration-free 
approximation, phase correction makes it possible to 
minimize the distortions of a beam. However, this 
advantage can be realized for only limited range of 
variations of the energy parameters of a beam.  

Let us consider the propagation of high-power optical 
radiation which enters a nonlinear medium along the 
vertical path. We can vary the initial foci of a beam in the 
transmitter plane along the two perpendicular axes. The 
problem is to minimize the angular divergence of a beam in 
the far diffraction zone after the beam has passed through a 
layer of a nonlinear medium. In the calculations we shall 
use the seasonal models of the atmosphere, in particular, the 
model of the summer atmosphere with the temperature 
profile taken from the standard model of the atmosphere. 
The continuous radiation that propagates along these paths 
is mostly affected by a thermal wind nonlinearity.  

We shall calculate the parameters of the optical 
radiation on the basis of the solution of the radiation 
transfer equation in the small-angle approximation. In 
evolution coordinates normalized to the refraction length  
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has the form  
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where ε~(z, R, t) is the relative perturbation of the dielectric 

constant of the medium upon exposure to the incident 

radiation, J (z, R, κ, t) is the brightness (the intensity) of 
radiation, a0 is the initial radius of the beam, α is the 

coefficient of volume absorption, ρ is the density of the 
medium, cp is the specific heat of the medium, P is the 

radiation power, n0 is the refractive index of the medium, 

and ν is the wind velocity.  
The numerical scheme for calculation of this equation 

was described in detail in Ref. 6.  
A similar problem was considered in Ref. 7 for 

coherent radiation propagating under conditions of wind 
nonlinearity when the wind direction does not rotate at 
distances shorter than the diffraction length. The problem 
of maximization of the radiation intensity in the focal spot 
was then solved.  

In this paper we discuss the problem of minimization 
of the angular divergence of a partially coherent beam 
propagating over a distance much longer than the 
diffraction length under conditions of wind nonlinearity 
taking into account the rotation of wind direction on the 
propagation path.  

It appears quite irrational to determine the optimal 
focusing conditions for minimization of the divergence by 
the gradient method or the method of sorting the foci. It is 
more convenient to start from some physical premises. We 
propose an algorithm for retrieving the parameters of the 
initial focusing of the beam that yields the foci close to 
optimal and, consequently, the angular divergence close to 
minimum.  

It is easy to derive the angular divergence (width) of 

the beam γxy

2 
 along the OX and OY axes in the far 

diffraction zone from simple formulas. The shift of the beam 
center Rc in the evolution plane z is determined as follows:  
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where W(z, R) is the intensity of the beam. The formula 
for the beam width then has the form  
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Beam intensity is related to the radiation brightness by the 
well-known relation  
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where k is the wave number. In the far diffraction zone 
where (z – zR) . LD the center shift and the diameter of 

the beam along the 0X axis are then determined in the 
following way:  
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where zR is the thickness of the effective nonlinear layer 

beyond which the self-action of a beam is not observed and 

further propagation of a beam is determined solely by 

diffraction. The parameters along the OY axis are 

determined in a similar way. Thus it follows from Eq. (5) 

that the angular center shift of the beam in the far 

diffraction zone is given by the weighted mean tilts of the 

phase front in the initial plane of diffraction. The intensity 

distribution in this plane is used for the weighting function.  
The formula of the angular shift of the beam center 

has the form  
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where κc(zR, R) = {κcx
(zR, R), κcy

(zR, R)} is the vector 

whose direction coincides with the direction toward the 
brightness distribution centroid at point R of the initial 
plane of diffraction. This vector is perpendicular to the 
phase front of radiation at that point  
 

κc(zR, R) = W–1(zR, R)⌡⌠
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We shall define the angular width of the brightness 
distribution over the axes OX and OY at the given point of 
the initial plane of diffraction as follows:  
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The angular width of the beam in the far diffraction 
zone can then be written in the form  
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where ϕk(zR, R) = κcX,Y
(zR, R) – ϕX,Y(zR). 

 

Phase correction in the radiating plane makes it 
possible to minimize the angular width at a distance z. 
Prescribing phase correction in the form  
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where Kx,y is the minimization coefficient, we obtain the shift 

ϕF additional to the shift ϕk in the zR plane. At the same time 

we assume that ϕFx = Kxx and ϕFy= Kyy. To minimize the 

angular width on account of this assumption, we must 
minimize with respect to Kxy the following integral:  
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where ηx = x, ηy = y.  

Solving this equation, we derive  
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where  
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Now the situation has arisen when the refraction length 
exceeds the thickness of the thin layer of the nonlinear 
medium (this effective layer is up to 3 km thick in the 
real atmosphere3). Focusing the beam with the foci FX 

and F
Y
 in the initial plane based on formulas (10) derived 

on the basis of the proposed algorithm gives a value of 
γ
X,Y that is close to minimum. Moreover, the larger LR, 

the closer is γ
X,Y to the minimum angular width. When 

LR becomes comparable to the thickness of the layer, 

focusing results in an angular width somewhat larger than 
the minimum width. However, if LR ≤ 3 km, the angular 

width of a beam with initial foci Fx and Fy, given by 

Eq. (10), already significantly exceeds the width of a 
collimated beam.  

The angular width γeff = (γ
2
X + γ

2
Y)/2  is plotted in 

Figs. 1a and 1b vs the refraction length LR. The angular 

divergence of a collimated beam is shown by the dotted curve, 
and the angular divergence of a collimated beam corrected on 
the basis of the proposed algorithm is shown by the dashed 
curve. The solid curve shows the minimum angular divergence.  

As can be seen from the figures, the conclusions drawn in 
Ref. 4 concerning the description of beam propagation in 
aberration-free approximation remain true for actual beams. As 
was indicated above, focusing makes the energy transfer more 
effective than in the case with a a collimated beam for a 
definite range of the energy parameters of the beam. However, 
beyond this range focusing results only in a deterioration of 
the efficiency of energy transfer.  
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FIG. 1. Angular width γeff vs the refraction length.  

 
The parameter of nonlinear refraction of a beam ER is 

related here with the refraction length LR via the relation  

 
ER = (LD/LR)2, 

 

where LD is the diffraction length, LD

2
 = κ2a0

4
 /(1 + a0

2
 /acoh

2 
), 

where acoh is the coherence radius and κ is the wave number.  

Optionally choosing ER = 1000, the gain nearly 20% 

was obtained. The gain was less for ER = 20 in agreement 

with the results of the previous works obtained in the 

aberrational–free approximation. In comparison with a 
collimated beam, the gain was nearly 20 and 10% for 
ER = 10000 and ER = 100.  

Thus, a simple algorithm for minimization of the 
angular divergence of a beam propagating along the 
vertical atmospheric path is proposed here which takes a 
thermal wind nonlinearity into account. It is shown that 
there exists a range of the energy parameters of a beam, 
in which focusing on the basis of the algorithm makes it 
possible to obtain the angular width of a beam close to 
minimum. Note that the algorithm operates in that range 
LR, where optimal focusing gives a large gain in 

comparison with a collimated beam. At the same time the 
efficiency of energy transfer deteriorates in that range of 
the energy parameters of the beam where even optimal 
focusing is of little importance.  
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