344  Atmos. Oceanic Opt. /April 2002,/ Vol. 15, No. 4

S.M. Chernyavskii

Source reconstruction from its noisy and incomplete image
S.M. Chernyavskii

A.N. Tupolev Kazan State Technical University, Kazan

Received September 17, 2001

A convergent iterative algorithm is proposed for finding a regularized solution for the problem of
source reconstruction from its noisy and incomplete image. This problem can be reduced to the problem of
finding a common point of convex sets and solved by the projection method proposed in my earlier papers.

1. Formulation of the problem

The intensity distribution y(¢y, ;) in the image
drawn by an isoplanatic optical system is related to the
intensity of an extended source of incoherent light
x(tq, ty) through the convolution integrall:

I Ih(ﬁ — Ty, ty = Ty)x(ty, 79 )drydry = y(ty, £5), (1)

—00

700<t1,t2 <0,

where (¢, ty) >0 is the point spread function. A
short-cut form of the equation (1) can be written as
h*x =y or Ax = y. The functions /4 and x are believed
to be summable functions in the plane of the variables
t1 and ty (h, x € Ly), and the function y is thought to
be a square summable function (y € L»).

Assume that the right-hand side of Eq. (1) is
known on a limited set ®, which determines the region
of image observation (measurement). The observation
accuracy is specified by the condition y € Y, where Y
is a closed convex set. An example of such a set is

Y=lyely:y=j-u, ||u||?0:”uz(q,tg)dthgsSZL 2)
g J
where y >0 is the observed noisy image; u is the

unknown additive noise.

The function x(t¢y, tp) >0 is assumed finite with
the carrier from the set wy.

Consider Eq. (1) as an equation for x and y. A
solution to Eq. (1) is any pair of the functions
(x, y) € H = Ly x Ly satisfying this equation.

Define the scalar product on H

(e, y1) (0, 92)) = (X1, 20) + (¥4, y2) =

= I jﬁﬂ (t1,ty) 2y (¢4, ty) dtydty +

0

+ J Ix1 (ty,ty) xy(ty, ty) dtydiy,
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and thus transform H into the Hilbert space.
The set of solutions of Eq. (1) is a closed linear
manifold in H:

V={y e H:Ax = y}. (3)

The accepted restrictions on the solution determine
the closed convex set

V1 = {(JC, y) e H: x(t1, tz) >0, (t1, t2) € Mg,

x(ty, £) =0, (¢, ty) ¢ og; y € Y. 4)

The problem is to find a solution to Eq. (1)
satisfying the restriction Vy. This problem can be
treated as finding a common point of the closed convex
sets (CPCCS): (x,y) € VV4. In the general case,
restrictions can be different and more numerous.
Assume that it was found that the a priori solution
satisfies m restrictions specified by closed convex sets
Vi, Vo, ..., V,y © H. Then any point (x, y) of the set

m

VvV, Vo :ﬂVs, if it is not empty, is a solution of
s=1

Eq. (1).

Among the elements of the set V'V, let us separate
the one (x*, y*), which has the minimum norm

min | (x,y) ||2 .

(x,y)eVV,

Iy I =G 2 %) (% g %) =

A pair of functions (x*, y*) will be referred to as
the normal solution of Eq. (1). It is obvious that
(x*, y*) = Pyy, (0, 0), where Pyy (x,y) is the
projection operator on the set V'V determined by the
condition

(5 %)= Pyy, (2, 9):] (x,y) - (%, )| =

I, 9) = (', ) |-

= min
(x',y) eV

Our aim is to find an approximate solution
(x*(ag), y*(ay)) of Eq. (1) depending on the
parameter o > 0. This solution continuously depends
on the measured image 7 and its norm in H at oy —> 0

tends to the normal solution || (x*(og), y*(a)) —
— (x*, y*) ||> 0 at ag — 0. This approximate solution
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will be referred to as the regularized solution of
Eq. (1). It must not belong to the set V'V, though it
is in the close proximity of (x*, y*) and, consequently,
to the set V'V,

2. Problems in solving the Eq. (1)

Equation (1) is the integral equation of the first-
kind of the convolution type, and the difficulties of its
solution are well known.2 Let this equation be solved
by the convolution inversion method:

x=F ' [F(y) /F(W)], (5)

where F and F ' are the direct and inverse Fourier
transform operators. With the increase of the spatial

frequencies v% + v% — o, the functions F(%) and F(y)
tend to zero and this tendency should be matched. Small
distortions of F(y) at large spatial frequencies due to
the noise in the image measurements can drastically
change the ratio F(y)/F(h) and, consequently, x.
To provide for a continuous dependence of the solution
on the initial data, the approximate (regularized)
solution?2.3

x=F " {FQ@) F*) /[ FWD | + ag My, v)1}  (6)

is considered in spite of Eq. (5). In Eq. (6), asterisk
denotes complex conjugation, and M is an even positive
definite function. To use Egs. (5) and (6), one should
know the image y on the whole plane. Actually, we
have an incomplete image measured in the region o,
and the information on the image can also absent at some
points of ®. Therefore, the procedure of image pre-
processing in o is used, as well as smooth extrapolation
of the image beyond o (Ref. 4).

We consider incompleteness of the data and the
character of noise as restrictions imposed on the
solution. The problem can be reduced to finding a
solution satisfying these restrictions. Such an approach
has become classical in a certain sense.25:6

The problem of finding the solution to Eq. (1)
with restrictions can be treated as a problem of finding
the CPCCS, and the latter can be efficiently solved by
iteration methods.57 An iteration method called the
method of increased dimension (MID) was proposed in
Ref. 7. This method is used for the development of a
convergent iteration algorithm for finding the
regularized solution (x*(oyg), y*(ay)), which was
considered above.

3. Method of increased dimension

Let us briefly consider the method of increased
dimension in accordance with Ref. 7 and prove a
theorem needed for obtaining the regularized solution
of Eq. (1). Let H be some Hilbert space, x, xy, ..., X,
are points in it, and the closed convex manifold V and
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the closed convex sets Vy, ..., V,, are defined in H.

Consider the functional

m
](JC,JQ,..,,JCW)ZZOCS"JC*XSHZ, O >0,
s=1

oy +...+a, =1,

where x € V and x; € Vi, s =1, m. The functional has
the minimum at x=2x;=...=x,. The minimizing
sequence (x,, X{p, ..., X;py) specifies approaching points
in the sets V, Vy, ..., V,,. As these points coincide, the
functional has the minimum, therefore it is called the
approach functional. Points coincide at the intersection
of VVy=VVy, ..., V,. This can be used to find
CPCCS. The minimizing sequence is constructed by the
method of coordinate descend along the variable x and
the set of variables xy, ..., x,,.

Let (x,, X1y, ..., Xy) be the nth approximation;
and the (n + 1)th one will be constructed following the
scheme

Xsn+1 = PVX Xn = Ps Xny S = 1, m,

Api1 = PT 2, P=Py, T=1+%(P -1,
_ m
PZZOLSPS, 0<r<2,
s=1

where [ is the identity operator. The operators P and T
are nonextending, and P is linear. The set of immovable
points of the operator product PT coincides with the
set VVy, and the sequences {x,} and {x;,} weakly
converge to a point of the set V'V,

Consider the regularized functional

J1(x,x1,...,xm):a0||x||2 + (2, 24,52, ), 09 >0

In the method of coordinate descend for the
functional Jy, the approximation x,+q is calculated as
before, and

an:p%xnv%:I+k(ﬁ_l),ﬁzﬁ/(1+a0).

The operator PT is contracting with the
contraction coefficient [1 — Ao,/ (1 + og)]. Therefore,
the sequence {x,} starting from any point of the set V
converges with the geometric rate to the sole point

x*(0y)=PTx*(ay)eV. Because of the continuity of
the projection operators, the norm of the sequence {x,}
converges to the point x7%(og) = Py x* (o).

Theorem. At ay — 0 the norm of the immovable
point x*(ag) of the operator PT tends to the point
x* = PVVOO, i.e., the point with the minimum norm in
the set V'V, if this set is not empty.

Proof. Consider a set of positive numbers
g1 > o2 > ... > 0gr > ..., O0gr > 0 at k —> . Denote
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x) = x*(az). Then, taking into account the linearity of
the operator P and the condition Px}, = x}, we can find

xp=PTx}=Plaf+1(Pxf—x})]=

= Pxj + A (Pi’x;; - Pxp) =xjp + A (PIBxZ - xp),
wherefrom

PIBxZ —x5=0 and PPxj=(+ag x;. (7)

The point (x%, Py x}, ..., P, x3) transforms the
functional J; into the minimum at the direct product
V x Vi x..xV,, therefore the following inequality is
valid:

9 m 9 9
cge] 3" + 2otk = P <o <[+
s=1
m 9
+Z ocS"x* —Pxx*" :aOk"x*
s=1

2

)

wherefrom we can conclude that immovable points x}
are restricted to the set

* *
[=il <]

Let [>k and h=x] —x). From Eq.(7) and the

condition of nonextending operator PP, we have the
inequality

4+ con)ar = (1+ ot ) i =

= " PPx] - PPx;, " <|af —xp

=121
The squared left-hand side of this inequality is
| (14 agp) ] = (1+ g ) ||2 =
=|| (ctor = ctp ) xj + (1+ gy ) ||2 =

= (ctor — o)’ ||2 +2(0g; —atgp ) X

x(1+ g )Re(g )+ (1+ oo )* P,
therefore it can be presented in the form

(cror — o )2” x2“2 +ag2+ag) | <

< 2(agp - oc()l)Re<x;;,h>.

Thus, we can conclude that Re (xZ,h) > (0. But from the
? +||2|* + 2Re (x},hy it follows

equality " x] 2 :" X

that " x] ’ 2" X ’ +|2]*. Then we can conclude that

S.M. Chernyavskii

* . .
the sequence of norms {"xk"} is nondecreasing,

bounded, and has a limit, and the norm

2=||12||2S||x1* 250 at k- oo

|57 - Rk

Therefore the sequence {x;;} is fundamental and,
because of the completeness of the space H and
closeness of V, it has the limit x** € V.

Taking into account that the operator PTx
continuously depends on x and o, we can find

x*¥* = lim xz = lim PTxZ = PTx**, that is,
k—o k—x

x** € VVy. From the condition 222 <2x*2 and
uniqueness of the point x* we can conclude that
x** = Pyy 0. Thus, the theorem is proved.

4. Solution of Eq. (1) by the method
of increased dimension

We have reduced solution of Eq. (1) at the
restriction (2) and (4) to the problem of finding the
common point of V and V; determined by the
conditions (2)—(4). Let us take the point of the
minimum of the regularized functional

Ji 1, o), (ays D] = ap (v, 1) + <y, ) +
- xp - HY YL YTy
where (x, y) € V and (x4, y1) € Vy, as an approximate
solution.
Determine the projection operators on these sets.

The projection onto V4 (xy, 1) = P4(x, y) is the point
of minimum in the problem

min  2(x, y) — (&, y’)2

',y)eVy
and it is determined by the conditions
X1(t1, t2) = max [x(t1, fz), 0] at (t1, tz) € O, (8)

X1(t1, t2) =0 at (t1, tz) & M0;

y1(t1,t2):§(t1,t2)+&6 at ({1, ty) € o
vl

and ||y—g}||>8;
yi(th t2) = 51(t1, tz) at (t1, tz) (=)

and |y-7]<8; (8a)

y1(ty, to) = y1(ty, to) at (¢, t) ¢ o.
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The projection onto the set V (x, y) = P(xy, yq) is
the point of minimum in the problem

. 2 2
wmin (b ==l 4l -l ) =

. 2 2
= min (e =} +ax - uilf, ).

The first coordinate x of the point of minimum
satisfies the Euler equation

x—x+A* (Ax —yp =0,

and it is equal to (I + A*A)™! (x; + A*y(), where A* is
the operator conjugate with A.

The second coordinate of the point of minimum is
y = Ax.

Since the operator Ax = h(ty, tp)* x(tq, ty), the
conjugate operator A*x = h(=ty, —t)* x(ty, ty),
therefore

Wx=(U+ A*A)_1 x = w(t1, fz)* x(t1, tz),

where the function w(tq, ty) = FI/(EMm) |2 +)].
Thus,

(JC, y) = P(JC1, yl) =

= [W(xy + A*y), AW (xq + A*y)]. 9

According to Section 3, the iteration scheme for
finding the approximate solution takes the following
form:

(%9, yo) € V is the zero approximation,

(xn+1’yn+1):P|:[+7‘[ Pi_]j:|(xn’yn):

1+ay

(10)

:{(14)“ PP1:|(xn’yn)’

+(10

where the operators P; and P are determined by
Egs. (8), (8a), and (9).

It is seen from Eq. (8a) that the operator P
continuously depends on 7, therefore the operator PT
in the right-hand side of Eq. (10) is also continuous

with respect to y. The operator PT  has the

contraction  coefficient [1 _ Moo

, which s
1 + (XO

independent of the sets V and Vy and, consequently, of
7. Therefore,® the immovable point of the operator
PT continuously depends on 7. Thus, the solution

(x*(ay), y*(ag)) found by the iteration scheme (10) is
the regularized solution of Eq. (1).
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5. Formal deduction of the iteration
scheme (10)

Nonregularized iteration scheme (10) can be
formally derived from Eq. (1). For this purpose,
Eq. (1) is multiplied by A* from the left and the
resulting equation is represented in the equivalent form

x + A*Ax = x + A*y. “an

Equation (11) is multiplied by the operator W from the
left and the resulting equation is

x=U =21 x+r W+ A*y).

If x and y satisfy the restriction V4, then
(x, y) = (xq, y) = Py(x, y) and

2= —=2A) x+ AW(xq + A*yy). (12)

Now let us write Eq. (1) in a different, but
equivalent form:

y=U-2) y+2rAx. 13)

If in Eq. (10) we assume o = 0, then we can see
how the non-regularized iteration scheme (10) can be
obtained from Egs. (12) and (13).

The advantage of the method of increased
dimension is that it allows us to point out the values of
the parameter A and the method of regularization of the
iteration scheme. Besides, selection of A and o has a
clear meaning.

6. Discussion and generalization

If the restriction is determined by the sets
Vi, ..., V), rather than by a sole set V4, then the
operator Py in the scheme (10) should be replaced by

m
the operator P= ZaSPs. With this approach, we can
s=1
take into account the property of solution smoothness.
For this purpose, the solution (x, y) should be
considered at the direct product of possibly different
Hilbert spaces H{ x Hy with the scalar product
(xq, x)g, +
+ U1 y2u,

If the optical system is not isoplanatic, then the
Fourier method is inapplicable to finding the operator
W. Therefore, it makes no sense to consider solution of
Eq. (1) on the whole plane, but it is sufficient to
believe that (x, y) € Ly(oy) x Ly(w). In this case, the
algorithm (10) leads to the regularized solution with
restrictions for the general integral equation of the
first-kind. The considered approach to source
reconstruction is also applicable, when the image is
measured at discrete points and the integral in Eq. (1) is
replaced with the integral sum (the case of a discrete
model).
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