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The influence of the screen edge curvature very small in magnitude and the 
screen absorptivity on the positions of fringers in the diffraction pattern from a 
thin screen has been revealed in the present paper. It has been proved 
experimentally that the light reflected from optically denser medium not only loses 
half a wave, but also undergoes a phase shift by π in the direction of wave 
propagation. The interference between the edge light propagating to the screen 
shadow and the incident light has been observed whose diffraction pattern is 
similar to that observed in the classical scheme. The initial phase delay of the 
shadow edge light was close to 0.5π and was equal to the phase advance at the 
edge light propagating to the illuminated side.  It is shown that the screen edge 
projection is not the boundary of the rectilinear light propagation.  The realistic 
scheme of formation of the diffraction pattern from the screen has been proposed. 
The critical angles of deflection of the edge rays from the incident light direction 
found earlier and being limiting for the linear dependence of the edge wave 
amplitude on the diffraction angle are shown to be slightly overestimated.  The 
reason for this has been clarified. 

 
A diffraction pattern from a screen, as shown in 

Refs. 1 and 2, is due to the interference between edge3 
and incident rays.  On this basis, expressions describing 
well the experimentally observed distances between the 
diffraction fringes and their intensities were derived. 

According to Ref. 1, in the case of a cylindrical 
incident wave the distances between fringes defined by 
Eq. (3) have the following form: 

 

h = (k0 + k) λL [(L + l)/l] , 
 

where (k0 + k) is the number of λ/2 in the expression 

for the geometric path difference between the incident 
and edge rays; l and L are the distances from a linear 
light source to a screen and from the screen to the 
observation diffraction plane, respectively; h is the 
distance from the shadow boundary (SB) to the 
diffraction fringe; k = 0, 2, 4,... correspond to the 
diffraction maxima and k = 1, 3, 5,... $ to the 
diffraction minima.  Here, k0 indicates that the edge 

wave phase undergoes a phase advance with respect to 
the incident light phase.  Its value could be determined 
from hmax1; however, because of the unknown position 

of the shadow boundary, it remains unknown.  It can 
be determined from experimentally measured distance 
h21 between the first and the second diffraction 

maxima. 
In this case, 

 

hmax1 = [2λL (L + l)/l $ h2
21]/2h21. (1) 

 
Then 
 

k0 = (h2
max1 l)/[λL [(L + l)]. (2) 

 
The value of k0 was found to be 0.69 for h21 

determined experimentally with l = 117 mm and 
L = 376.5 mm. 

Since the edge rays propagating to the shadow and 
outside it are shifted in phase by π (Ref. 1) and the 
edge ray on the illuminated side runs ahead of the 
incident ray, the ray diffracted to the shadow at the 
instant of its deflection in the deflection zone undergoes 
a phase delay with respect to the incident rays.  In the 
experiments with different values of l and L, the value 
of k0 was found to be equal to 0.69, 0.708, 0.626, 

0.593, 0.695, and 0.674.  Nevertheless, the calculated 
values of h (k0 = 0.69) slightly differ from the 

experimental ones because of the square root 
dependence of h on k0 and reduced effect of k0 

oscillations on the position of the diffraction fringe 
with the increase of k. 

According to the data from Table I, when a new 
blade was used as a screen, the value of k0 was 0.07 

less than for a blunt blade, i.e., for very small 
curvature radii of the screen edge it affects the position 
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and the intensity of the diffraction fringes. That was 
not noticed by Fresnel.4 

 
TABLE I. 
 

λ = 0.53 μm 

l, mm L, mm h21 exp, mm k0 

New blade 
6 99.5 0.807 0.6 
8.63 198.5 1.314 0.634 
9 99.5 0.663 0.62 
12 99.5 0.58 0.63 
35.5 99.5 0.368 0.65 
100 99.5 0.266 0.655 

Blade with blunt edge 
12 110.5 0.623 0.702 
 
A decrease of the phase shift of the edge wave was 

also observed for the blade covered in soot.  For 
example, in the case of natural light with λ = 0.53 μm 
(l = 12 and L = 110.5 mm) soot leads to the decrease of 
k0 by a factor of 0.702/0.651 = 1.08.  When a He-Ne 

laser (l = 11.4 and L = 99.5 mm) was used as a source 
of light, the value of k0 was decreased by a factor of 

0.773/0.016 = 1.255. 
The essence of the problem considered above is 

clearly understood from considerations of the edge light 
given in Ref. 3 according to which it consists of the 
Sommerfeld edge component being essentially the light 
reflected from the screen edge and deflected in the zone 
of deflection of the incident rays. Since the light loses 
half a wave due to reflection from a denser medium,5 
Sommerfeld’s conclusion that the edge wave coming 
from the screen edge undergoes a phase shift by π with 
respect to the incident light wave is true. 

When the screen is covered in soot, the reflected 
component becomes much weaker. Nevertheless, k0 does 

not vanish. Thus, the fundamental component at the 
instant of its appearance also undergoes a phase shift. 

Since the rays of the Sommerfeld component come 
from the screen edge and the rays of the fundamental 
component deflect in the deflection zone away from the 
edge, they should have the geometric path difference Δk. 

From the above reasoning the phase shift of the 
resultant edge wave described by k0 is defined by the 

phase shifts of the fundamental and Sommerfeld 
components, their amplitudes, and the value of Δk.  In 
the case of replacement of the blunt blade with a new 
one or for blade covered in soot, the reflected 
component becomes weaker because of reduced 
reflecting area on the screen edge and the absorption. 

The decrease of the resultant edge wave phase shift 
observed in this case shows that the Sommerfeld 
component in the diffraction plane undergoes slightly 
greater phase shift in the direction of wave propagation 
than the fundamental component, in spite of Δk.  This 
allow us to conclude that the light not only loses half a 

wave due to reflection, but also undergoes a phase shift 
by π in the direction of wave propagation. 

According to the above reasoning, the phase shift 
of the resultant edge wave approaches the phase shift of 
the fundamental component when the reflected 
component becomes weaker. 

When the natural light source (λ = 0.53 μm)was 
replaced by a laser, the value of k0 increased from 

0.702 to 0.773, which can be explained by the increased 
contribution from the reflected component to the total 
edge flux. 

 

 
FIG. 1. Scheme of formation of the diffraction 
pattern from the screen by shadow and incident light. 

 
Figure 1 shows the scheme of the interference of 

the edge rays 2, propagating to the shadow of the 
screen Sc, with the incident light.  Such interaction 
becomes possible because the screen is placed above the 
image S' of the linear light source S.  The edge and 
incident rays coming from the wave front OA are 
superposed in the observation plane with different 
geometric phase differences Δ.  Their diffraction pattern 
is analogous to that observed in the classical scheme 
(see Fig. 4 of Ref. 1).  Here, the position of max1 is 
also shifted from the shadow boundary.  Contrary to 
the classical scheme, in this case the incident rays 3 
travel greater distance by the time of superposition 
with the edge rays.  Nevertheless, in max1, shifted to 
the left of the shadow boundary, there is no path 
difference between them and the edge rays.  Hence, the 
edge light propagating to the shadow undergoes a phase 
shift opposite to the direction of propagation.  As a 
result, the edge wave in the shadow is decreased in 
phase with respect to the incident wave and is not in 
phase with it.6,7  An additional path difference Δ0 

corresponds to this phase delay.  Since rays 1 and 3 are 
superposed at the point B on the axis S' without path 
difference, then 

Δ = [nB + Bp $ (np + Δ0)] = 

= [(Δ2 $ Δ1) $ Δ0] = (Δg $ Δ0). 
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Since Δ1 = h2/2(L + l)  and  Δ2 = h2/2L, then 
 

h = (k0 + k) λL [(L + l)/l] , (3) 
 

where k0 describes the phase delay of the edge wave by 

k0π with respect to the incident light phase.  This 

expression is identical to Eq. (3) of Ref. 1; therefore, 
hmax1

 and k0 are defined by formulae (1) and (2).  The 

values of k0 obtained in different experiments based on 

this scheme are presented in Table II.  They are 
approximately equal to the values reported before.  
This indicates that the phase delay of the edge rays 
propagating behind the screen is equal to the phase 
advance of the edge rays propagating from the screen.  
If the phase shift between these rays is equal to π, the 
delay and advance of the phase will be equal to π/2 
(see Ref. 1).  In this case, k0 must be equal to 0.5.  

But then the values of k0 calculated from Eqs. (1) and 

(2) are overestimated by 0.1$0.2.  The difference 
between maximum and minimum values of k0 is not 

only due to inaccuracy in determination of its maximum 
value since due to the effect of soot and the decrease of 
the screen edge curvature, k0 tends to lower values.  

The true phase shift between the shadow component of 
the edge light and the opposite component is likely to 
be slightly greater than π and the values of k0 obtained 

from Eqs. (1) and (2) are slightly overestimated. 
 
TABLE II. 
 

λ = 0.53 μm 

Screen type l, mm L, mm k0 

Blunt blade 12 87.5 0.738
Blade covered in soot 12 98.5 0.705
New blade 83.2 134 0.7   
 

In the considered diffraction scheme soot and a 
new blade also lead to the decrease of k0 (Table II) but 

to a slightly lower degree than in the scheme shown in 
Fig. 4 of Ref. 1.  Therefore, in the edge wave 
propagating behind the screen the Sommerfeld 
component is slightly delayed with respect to the 
fundamental one whereas in the edge wave propagating 
from the screen it, on the contrary, runs ahead of the 
fundamental component. 

As is known, the boundary of light propagation 
according to laws of geometric optics is considered as a 
geometric shadow boundary.  By the classical shadow 
boundary (CSB) is meant the projection of the 
diffraction screen edge onto the plane of diffraction 
pattern (Fig. 2).  Once the light ray deflection zone 
was found to be formed above the surface of 
bodies5,8,9,10 with its total depth hzt being greater than 

λ, it becomes clear that the boundary of the rectilinear 
light propagation differs from the CSB and the 
projection of light rays passing along the external 
boundary of the deflection zone should be taken as a 

true shadow boundary (TSB).  A difference between 
CSB and TSB should be most significant in the case of 
diffraction of a divergent beam by the screen 
particularly at small values of l and large values of L.  
(In the case of diffraction of plane and cylindrical 
waves, this difference is equal to hzt and  

$ hzt [(l + L)/l], respectively.) 

 

 
FIG. 2. True scheme of diffraction of a cylindrical 
wave by the thin screen. 
 

Since the edge rays in the deflection zone of the 
screen are deflected at a certain distance r from the 
screen edge rather than at the edge, the formula 
describing the position of the diffraction fringes with 
respect to CSB should differ from the above formula.  
To derive it, lets us use the scheme shown in Fig. 2, 
where IRP is the projection incident ray 1 prior to its 
deflection in the zone of the screen Sc, 1′ is the edge 
ray engendered by deflection of ray 1 in the zone of 
the screen, h and H are the distances from the point 
of superposition of edge 1′ and incident 3 rays to IRP 
and CSB, respectively.  According to this scheme, the 
path difference between the rays interfering at the 
point P is 

 

Δ = [(Δ1 + Δ1′ $ Δ3) $ Δ0] = (Δe $ Δ0). 
 

Since Δ1 = 
r2

2l,  Δ1′ = 
(H $ r)2

2L , and Δ3 = 
H2

2(L + l), then 

 

H = 
r (L + l)

l  + h, (4) 

 

where the second term is specified by the formula given 
above.  Therefore, it specifies the distance from the 
fringes to IRP, whose position depends on r, rather 
than to CSB. The unknown values of r, different for 
fringes of different order, and k0 do not allow us to 

find the distances between the fringes of the diffraction 
pattern from Eq. (4).  However, when the distance to 
the fringes is counted off from the fixed IRP1 
(projection of the incident rays coming after their 
deflection to max1), the formula for h and Eqs. (1) and 

(2) describe adequately the distances between the 
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diffraction fringes as the experimental data presented in 
Ref. 1 have shown. 

This circumstance suggests that k0 increases with 

the increase of the edge ray deflection angles.  This 
assumption is reasonable.  If Δ0 = k0λ/2 is caused by 

the effect of the deflection zone on the rays passing 
through it, it will increase as the effect intensifies, i.e., 
as the deflection angle of the edge rays increases.  In 
this case simultaneous shift of the true position of IRPi 
towards the beam axis with the increase of the fringe 
order due to ray deflection in more efficient part of the 
zone (with smaller r) and the increase of k0 give 

approximately the same position of fringes as with k0 

defined from Eq. (2) and h counted off from IRP1.   
In connection with the fact that the position of 

max2 is counted off from IRP1 rather than IRP2, in the 

derivation of Eq. (1) the value of hmax1 appears to be 

slightly overestimated, which leads to the above-
indicated overestimation of k0. Table III obtained in 

the experiments with the diametrically opposed screens 
gives the values of r1 from which the incident rays 

deflect to the first maxima and the distances Δh from 
IRP1 to CSB (hmax1

 was defined from Eq. (1), Hmax1
 

was equal to half a distance between max1 from the left 

and right screens, and ε = hmax1
/L). 

 
TABLE III. 
 

λ = 0.53 μm 

l, mm L, mm hmax1, mm r1, μm Δh, mm ε, min

12 99.5 0.582 7.8 0.073 20 
35.5 & 0.381 12.9 0.049 13.2 
90 & 0.277 16 0.034 9.6 
 
According to Figs. 1 and 2 of Ref. 2, formula (1) 

expressing the linear dependence of the edge wave 
amplitude on the distance h between the point of the 
edge ray incidence and the shadow boundary 
(proportional to the diffraction angle ε) incorrectly 
describes the variations of the intensity Je of edge light 

when h and ε become less than critical ones hcr, and εcr.  

In the case of a cylindrical incident wave (l = 35.5 mm, 
L = 99.5 mm, and hmax = 0.372 mm), hcr = 0.28 mm 

and εcr = 0.16°.  This value of εcr is slightly 

overestimated.  The reason is the following.  The 
dependence Je = A/h2 was derived on the basis of 

experiments with a convergent beam (Fig. 1a of Ref. 1) 
in which extentions of the initial ray trajectories 
entering the deflection zone converged at the point 
from which h was connected off.  Therefore, it is 
fulfilled when h is a distance from the projections of 
the initial ray trajectories deflected in the zone to 
points of their incidence on the investigated plane.  In 
the construction of curve 3 (Fig. 1) describing Je in the 

shadow, h was taken to be the distance to IRP1 and 
matched the above requirement only for the edge rays 
coming to max1 of the diffraction pattern and for the 

rays deflected from the same zone level toward the 
shadow.  The edge rays coming to the maxima of higher 
orders and those deflected at the same angles into the 
shadow, deflect in the deflection zone with r < r1.  The 

edge rays propagating to the region between CSB and 
max1, as well as to the diametrically opposed shadow 

zone, deflect with r > r1. The spread of r leads to the 

spread of distances Δh from the incident ray projections 
to IRP1.  For h < hcr, h noticeably differs from h±Δh 

and the expression Je = f(h2) becomes invalid. 

When ε < ε1 = 57.3°hmax1
/L, IRP is shifted away 

from the classical shadow boundary with respect to 
IRP1 and the distance from it to the point of 

measurement of the shadow intensity Js becomes equal 
to h + Δh.  If the quantity h + Δh were substituted into 
the expression for the intensity of the edge wave for 
h < hcr this expression would remain valid until a 

certain minimum value of h, and εcr becomes smaller. 

For a divergent incident beam Δh = Δr(L + l)/l, 
whereas for a parallel beam Δh = Δr.  That is why 
εcr = 0.072°  for the plane wave appears to be smaller 

than that for the cylindrical incident wave.2 
From Figs. 1 and 2 and the Cornu spiral, the initial 

sections of curves 1 and 2 describing Js in the experiment 

diverge.  The main reason of this is that we count h for 
curve 1 from CSB, whereas for curve 2, it is counted off 
from IRP1 shifted to the right from CSB.  However, in 

the figures IRP1 is made coincident with CSB. 

 

 
 

FIG. 3. Scheme of diffraction of the plane wave by 
the screen. 
 

Figure 3 illustrates the scheme of the plane wave 
diffraction by the screen for L = 5 mm and 
λ = 0.53 μm.  From Eq. (4) of Ref. 1 the distance 
hmax1

 from IRP1 to max1 produced due to the 
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interference of the edge ray 1 and the incident ray 3 is 
equal to 0.135 mm (see Ref. 1). Then ε = 9.3′. 
According to Table III, this angle corresponds to 
r1 = 16 μm.  For the Cornu spiral,11 max1 is formed at 

v = 1.2.  Then the distance from max1 to CSB 

hF.max1
 = v λL/2 = 0.138 mm.   

Because the incident wave is plane, the zone, 
which following Fresnel produces max1, has the width 

R = hF.max1
.  Then we subtract from it the initial 

section of width r1  From the boundary of this section 

the incident rays deflect in the deflection zone toward 
max1.  As a consequence, v will decrease down to 

v1 = (hF.max1
 $ r1) 2/λL = 1.06. In the Cornu spiral, 

it corresponds to the resultant amplitude of oscillations 
coming to max1 being equal to 201.5 mm for the 

incident wave amplitude being equal to 176.5 mm and 
the phase of total oscillation differs from the resulting 
phase for fully open wave front by ψ = 0.041π. 

Due to the decrease in v, the relative light 
intensity in max1 will be JF = 1.303. At the same 

time, the relative intensity of the edge rays in max1 

Je = ( 1.374 $ 1)2 = 0.03.  If the points of the wave 

front had been sources of light oscillations propagating in 
different directions and they had been added in the 
diffraction bands, the light intensity in max1 would have 

been determined by the interference of the Fresnel 
resultant oscillation, having intensity JF, with the edge 

light. 
Since in max1 the edge rays are in phase with the 

incident light and the phase of the resultant wave 
propagating from the open part of the wave front 
decreased by r1 is shifted by ψ with respect to the 

incident light phase, the relative intensity of max1 

should be no less than 
 

Jmax1
 = (JF + Je + 2 JF Je cosψ) = 

 

= (1.303 + 0.03 + 2 1.303 ⋅ 0.03 cos 7.38°) = 1.727. 
 

However, it is equal to 1.374, that is, to the value 
caused by the interference of the edge and incident 
rays.  Therefore, the light perturbations from the points 
of the open part of the wave front located outside the 
deflection zone propagate only in the direction of the 
incident light propagation. 

The experiments on the separation of the edge 
and incident rays when the light was diffracted by a 
screen (Fig. 3 of Ref. 12) led to the same 
conclusions.  Actually, if the points of the wave front 
had been sources of light oscillations, every 
oscillation coming to S1 would have produced its own 

diffraction pattern from a slit.  Since the points of 
the wave front are at different angles with respect to 
the slit axis, the elementary diffraction patterns 
should be shifted with respect to each other at the 
same angles and hence should merge to a continuous 
horizontal band.  However, instead of it one can see 
only max1 formed by the incident rays coming to the 

slit in the direction of light propagation and max1′ 
formed by the rays coming from the diffraction screen 
edge. 

When the points of the wave front are in the 
deflection zone of any body, they formally can be 
considered as sources of light oscillations propagating 
in different directions.  But in so doing it should be 
remembered that these oscillations propagate at 
gradually decreasing angles relative to the direction 
of light propagation as the distance of the point 
sources from the body edges increases, and propagate 
in opposite directions when they pass from the 
deflection zone of optically denser (less dense) 
medium to the subsequent zone of less dense (denser) 
medium.8 

Table IV presents diffraction patterns from the 
clean blade and blade covered in soot when the 
intensity Jc of the incident light across the wave front 

remains constant.  Here, if is the light intensity in 
diffraction fringes; Je.c(e.s) are the edge light intensities 

with clean blade and blade covered in soot; 

Je.c(e.s) = ( Jf $ J“)
2; J′e.s is Je.s at diffraction angles 

being equal to those for Je.c. 

 
 

TABLE IV. 
 

λ = 0.53 μm, l = 12 mm, L = 110.5 mm, and Jc = 39.3 rel units. 

Clean blade, k0 = 0.702 Blade covered in soot, k0 = 0.651 

Fringe hsc, mm Jf, rel. units Je.c, rel. units Jf/Jc hsc, mm Jf, rel. units Je.s, rel. units Jf/Jc Je.c/Je.s

max1 0.648 52.8 0.998 1.344 0.624 52.2 0.917 1.329 1.174 

min1 1.023 31.8 0.4    0.808 0.994 32.1 0.361 0.817 & 

max2 1.271 45.9 0.259 1.17  1.259 45.5 0.226 1.157 & 

max3 1.682 44.3 0.148 1.127 1.674 43.9 0.127 1.117 & 
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TABLE V. 
 

λ = 0.6328 μm 

Clean blade, k0 = 0.773 and Jc = 61.5 rel. units Blade covered in soot, k0 = 0.616 and Jc = 65 rel. units

Fringe Jf, rel. units Je.c, rel. units Jf/Jc Jf, rel. units Je.s, rel. units Jf/Jc Je.c/J ′e.s 

max1 84.55 1.831 1.375 87.4  1.653 1.344 1.467 

min1 48.33 0.791 0.786 53     0.615 0.815 & 

max2 73.22 0.511 1.191 75.4  0.389 1.161 & 

max3 70.26 0.292 1.143 72.84 0.224 1.121 & 

 
TABLE VI. 

 

λ = 0.6328 μm, l = 12 mm, L = 98.5 mm, Jc = 69.24 rel. units, k0 = 0.746 

Fringe hsc, mm hp, mm Je2, rel. units Jf, rel. units Jf/Jc Je2/J ′e2 

max1 0.654 0.654 2.512 98.1 1.417 1.175 

min1 1.009 1.001 1.055 53.2 0.768 & 

max2 1.255 1.255 0.682 83.7 1.208 & 

max3 1.652 1.650 0.394 80.1 1.157 & 

 
In the case of a clean blade, Fbl21/Fbl11 = 

= 15/15 rel. units. For blade covered in soot, 
Fbl21/Fbl11 = 20/9.5 rel. units (Fbl21 and Fbl11 are the 

fluxes of edge rays in the shadow and outside it for the 
initial parts of the fringes formed by them when S′ is in 
the plane of the screen.3 

As is seen from Table IV, attenuation of edge light 
propagating from the screen by a factor of 
15/9.5 = 1.58 due to the absorption of the Sommerfeld 
component 1′ (Fig. 4) has led to the decrease of the 
relative intensity in the maxima and its increase in the 
minima.  The reduction of the fringe contrast would be 
greater if the phase shift of the edge rays were not 
decreased from k0π = 0.702π down to 0.651π for blade 

covered in soot. This gave rise to the shift of the fringes 
toward the shadow boundary where the intensity of the 
edge light was higher. 

 

 
FIG. 4. Scheme of the interference of the 
fundamental and Sommerfeld components of the 
edge wave with the incident light in the diffraction 
pattern from the screen. 

The results of experiments with a laser used as a 
source of light are presented in Table V.  In these 
experiments with a blade covered with soot the ratio 
Fbl21/Fbl11 was equal to 1.456.  These results indicate 

more clearly the reduction of fringe contrast and the 
decrease of k0 on the illuminated side when light is 

diffracted by the screen covered in soot. 
When the incident light interferes with the edge 

rays propagating to the screen shadow (Fig. 1), the 
relative intensities of the maxima, on the contrary, 
increase and those of the minima decrease  
(see Table VI, where Je2 and Je2′  are the intensities  

of the edge wave in the shadow for the blade covered in 
soot and clean blade, respectively, being equal to  

( Jf $ J“)
2 due to the increase of the edge ray 

intensity caused by the absorption of the Sommerfeld 
component attenuating the fundamental one.   

It seems likely that because of relatively small 
change in the intensities of fringes the above-considered 
effect of absorbing coverings on the diffraction pattern 
was not noticed by Fresnel. 

With the increase of Fbl11 by a factor of 1.58, 

when soot was removed, the edge wave intensity 

defined as ( Jf $ Jc)
2 increased only by a factor of 

1.174 (Table IV).  If it were not the decrease of k0 for 

the blade covered in soot, the ratio Je.c/Je.s would be 

slightly greater but less than 1.56 as before. 
The reason for this disagreement is the neglect of 

the phase shift between the fundamental 1 and 
Sommerfeld 1′ components of the edge light for the 
definition of Je.c outlined above.  This shift is testified, 

for example, by the increase of k0 from 0.651 to 0.702.  

For the phase of the resultant edge wave to be changed 
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by (0.702$0.651)π when the fundamental component and 
the weaker Sommerfeld component are superposed, 
the phase shift of the Sommerfeld component with 
respect to the fundamental one must be much greater.  
If the phase of the fundamental component 
propagating from the screen undergoes a phase jump 
by 0.5π in the direction of light propagation and the 
Sommerfeld component undergoes a phase shift by π 
due to the reflection from the screen edge, the 
Sommerfeld component will run ahead of the 

fundamental one by ψ = ⎝
⎛

⎠
⎞0.5π $ 

2Δk π
λ  ≈ 0.5π. 

When the blade is covered in soot, the edge light 
is formed by the fundamental component. Its intensity 
Je.s in max1 is equal to 0.917 rel. units (Table IV).  

Without soot, the edge light intensity should increase 

up to Je.c = 1.58 Je.s = 1.449 = (Je.s + JS + 2 Je.s JS × 

× cosψ), where JS is the Sommerfeld component of the 

intensity. For cos0.5π = 0, JS = 0.532 rel. units and 

makes up 0.58 of the fundamental component. 
Because of the effect of the fundamental 

component with Je.s = 0.917 rel. units being in phase 

with the incident rays in max1, the light intensity in 

max1 increases from Jc = 39.3 to 52.2 rel. units 

(Table IV). In the case of the clean blade the 
Sommerfeld component with the phase shift ψ = 90° 
is superposed on max1. As a result, the intensity of 
max1 must increase up to J′max1 = 

= (Jmax1
 + JS + 2 Jmax1

 JS cos 90°) = (52.2 + 0.530) = 

= 52.73 rel. units.  Then the ratio J′max1
/Jc = 1.342, 

that is, is practically equal to the true value of the 
relative intensity of max1. 

Actually, max1 in the diffraction pattern from the 

clean blade is located between the point with path 
difference between the incident light and the 
Sommerfeld component rather than at the point with 
zero path difference between the incident light and the 
fundamental edge component, i.e., at great distances 
from the shadow boundary.  Because of this, k0 

increases from 0.65 to 0.7. 
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